Twisted conjugacy classes in unitriangular groups

被引:13
作者
Nasybullov, Timur [1 ]
机构
[1] KU Leuven KULAK, Dept Math, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
基金
比利时弗兰德研究基金会;
关键词
R-INFINITY-PROPERTY;
D O I
10.1515/jgth-2018-0127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an integral domain of characteristic zero. In this note we study the Reidemeister spectrum of the group UTn (R) of unitriangular matrices over R. We prove that if R+ is finitely generated and n > 2 vertical bar R*vertical bar, then UTn (R) possesses the R-infinity-property, i.e. the Reidemeister spectrum of UTn (R) contains only infinity, however, if n <= vertical bar R*vertical bar, then the Reidemeister spectrum of UTn (R) has nonempty intersection with N. If R is a field and n >= 3, then we prove that the Reidemeister spectrum of UTn (R) coincides with (1, infinity}, i.e. in this case UTn (R) does not possess the R-infinity-property.
引用
收藏
页码:253 / 266
页数:14
相关论文
共 20 条
[1]  
Dekimpe K., 2017, PREPRINT
[2]   The R-infinity property for nilpotent quotients of surface groups [J].
Dekimpe, Karel ;
Goncalves, Daciberg L. .
TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 3 (01) :28-45
[3]   The R∞ property for free groups, free nilpotent groups and free solvable groups [J].
Dekimpe, Karel ;
Goncalves, Daciberg .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 :737-746
[4]   Nielsen periodic point theory on infra-nilmanifolds [J].
Dugardein, Gert-Jan .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (04) :537-566
[5]   Twisted Burnside-Frobenius theory for discrete groups [J].
Fel'shtyn, Alexander ;
Troitsky, Evgenij .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 613 :193-210
[6]   The R∞ and S∞ properties for linear algebraic groups [J].
Fel'shtyn, Alexander ;
Nasybullov, Timur .
JOURNAL OF GROUP THEORY, 2016, 19 (05) :901-921
[7]   Aspects of the property R∞ [J].
Fel'shtyn, Alexander ;
Troitsky, Evgenij .
JOURNAL OF GROUP THEORY, 2015, 18 (06) :1021-1034
[8]  
Felshtyn A., 1994, K-Theory, V8, P367
[9]   Twisted conjugacy classes in nilpotent groups [J].
Goncalves, Daciberg ;
Wong, Peter .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 :11-27
[10]  
Levchuk V.M., 1983, SIB MAT ZH, V24, P64