Twisted conjugacy classes in unitriangular groups

被引:12
作者
Nasybullov, Timur [1 ]
机构
[1] KU Leuven KULAK, Dept Math, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
基金
比利时弗兰德研究基金会;
关键词
R-INFINITY-PROPERTY;
D O I
10.1515/jgth-2018-0127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an integral domain of characteristic zero. In this note we study the Reidemeister spectrum of the group UTn (R) of unitriangular matrices over R. We prove that if R+ is finitely generated and n > 2 vertical bar R*vertical bar, then UTn (R) possesses the R-infinity-property, i.e. the Reidemeister spectrum of UTn (R) contains only infinity, however, if n <= vertical bar R*vertical bar, then the Reidemeister spectrum of UTn (R) has nonempty intersection with N. If R is a field and n >= 3, then we prove that the Reidemeister spectrum of UTn (R) coincides with (1, infinity}, i.e. in this case UTn (R) does not possess the R-infinity-property.
引用
收藏
页码:253 / 266
页数:14
相关论文
共 20 条
  • [1] Dekimpe K., 2017, PREPRINT
  • [2] The R-infinity property for nilpotent quotients of surface groups
    Dekimpe, Karel
    Goncalves, Daciberg L.
    [J]. TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 3 (01): : 28 - 45
  • [3] The R∞ property for free groups, free nilpotent groups and free solvable groups
    Dekimpe, Karel
    Goncalves, Daciberg
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 737 - 746
  • [4] Nielsen periodic point theory on infra-nilmanifolds
    Dugardein, Gert-Jan
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (04) : 537 - 566
  • [5] Twisted Burnside-Frobenius theory for discrete groups
    Fel'shtyn, Alexander
    Troitsky, Evgenij
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 613 : 193 - 210
  • [6] The R∞ and S∞ properties for linear algebraic groups
    Fel'shtyn, Alexander
    Nasybullov, Timur
    [J]. JOURNAL OF GROUP THEORY, 2016, 19 (05) : 901 - 921
  • [7] Aspects of the property R∞
    Fel'shtyn, Alexander
    Troitsky, Evgenij
    [J]. JOURNAL OF GROUP THEORY, 2015, 18 (06) : 1021 - 1034
  • [8] Felshtyn A., 1994, K-Theory, V8, P367
  • [9] Twisted conjugacy classes in nilpotent groups
    Goncalves, Daciberg
    Wong, Peter
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 : 11 - 27
  • [10] Levchuk V.M., 1983, SIB MAT ZH, V24, P64