Numerical Kahler-Einstein metric on the third del Pezzo

被引:28
|
作者
Doran, Charles [1 ]
Headrick, Matthew [2 ]
Herzog, Christopher P. [3 ]
Kantor, Joshua [1 ]
Wiseman, Toby [4 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[4] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England
基金
英国科学技术设施理事会;
关键词
D O I
10.1007/s00220-008-0558-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The third del Pezzo surface admits a unique Kahler-Einstein metric, which is not known in closed form. The manifold's toric structure reduces the Einstein equation to a single Monge-Ampere equation in two real dimensions. We numerically solve this nonlinear PDE using three different algorithms, and describe the resulting metric. The first two algorithms involve simulation of Ricci flow, in complex and symplectic coordinates respectively. The third algorithm involves turning the PDE into an optimization problem on a certain space of metrics, which are symplectic analogues of the "algebraic" metrics used in numerical work on Calabi-Yau manifolds. Our algorithms should be applicable to general toric manifolds. Using our metric, we compute various geometric quantities of interest, including Laplacian eigenvalues and a harmonic (1,1)-form. The metric and (1,1)-form can be used to construct a Klebanov-Tseytlin-like supergravity solution.
引用
收藏
页码:357 / 393
页数:37
相关论文
共 50 条
  • [21] Extremal Kahler-Einstein Metric for Two-Dimensional Convex Bodies
    Klartag, Bo'az
    Kolesnikov, Alexander V.
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) : 2347 - 2373
  • [22] A SURVEY ON KAHLER-EINSTEIN METRICS
    YAU, ST
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1984, 41 : 285 - 289
  • [23] Twisted Kahler-Einstein metrics
    Ross, Julius
    Szekelyhidi, Gabor
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 1025 - 1044
  • [24] Convergence of Kahler-Einstein orbifolds
    Sesum, N
    JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (01) : 171 - 184
  • [25] Kahler-Einstein Metrics and Stability
    Chen, Xiuxiong
    Donaldson, Simon
    Sun, Song
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (08) : 2119 - 2125
  • [26] Complete Kahler-Einstein manifolds
    Kuehnel, Marco
    COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 171 - 181
  • [27] Positivity in Kahler-Einstein theory
    Di Cerbo, Gabriele
    Di Cerbo, Luca F.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 159 (02) : 321 - 338
  • [28] Coupled Kahler-Einstein Metrics
    Hultgren, Jakob
    Nystrom, D. Witt
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (21) : 6765 - 6796
  • [29] KAHLER A-HYPERSURFACES IN A KAHLER-EINSTEIN MANIFOLD
    ROSCA, R
    VANHECKE, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (21): : 1363 - 1366
  • [30] SINGULAR KAHLER-EINSTEIN METRICS
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (03) : 607 - 639