On the Existence of Hermitian Self-Dual Extended Abelian Group Codes

被引:1
作者
Dicuangco-Valdez, Lilibeth [1 ]
Moree, Pieter [2 ]
Sole, Patrick [3 ]
机构
[1] Univ Philippines, Inst Math, Quezon City 1101, Philippines
[2] Max Planck Inst, D-53111 Bonn, Germany
[3] Telecom Paristech, LTCI, CNRS, Dept Comelec, F-75013 Paris, France
来源
AUTOMORPHIC FORMS: RESEARCH IN NUMBER THEORY FROM OMAN | 2014年 / 115卷
关键词
DUADIC CODES; NUMBER; ORDER; SUMS;
D O I
10.1007/978-3-319-11352-4_5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:67 / 84
页数:18
相关论文
共 19 条
[1]   The lengths of Hermitian self-dual extended duadic codes [J].
Dicuangco, Lilibeth ;
Moree, Pieter ;
Sole, Patrick .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (01) :223-237
[2]   Split group codes [J].
Ding, CS ;
Kohel, DR ;
Ling, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (02) :485-495
[3]  
Finch Steven R., 2003, Mathematical Constants, V94
[4]  
HARDY G.H., 2008, An introduction to the theory of numbers, V6th
[5]  
IVIC A, 1983, J NUMBER THEORY, V16, P119
[6]  
KRATZEL E, 1970, Q J MATH, V21, P273
[7]   DUADIC CODES [J].
LEON, JS ;
MASLEY, JM ;
PLESS, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (05) :709-714
[8]  
Moree P., 1999, Exposition. Math., V17, P289
[9]  
Moree P., 2012, INTEGERS A, V12A
[10]  
Nicolas J.-L., 1988, Ramanujan Revisited, P215