Bethe ansatz and the geography of rigged strings

被引:6
作者
Lulek, Tadeusz [1 ]
机构
[1] Rzeszow Univ Technol, PL-35959 Rzeszow, Poland
来源
NONCOMMUTATIVE HARMONIC ANALYSIS WITH APPLICATIONS TO PROBABILITY | 2007年 / 78卷
关键词
D O I
10.4064/bc78-0-17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We demonstrate the way in which composition of two famous combinatorial bijections, of Robinson-Schensted and Kero,-Kirillov-Reshetikhin, applied to the Heisenberg model of magnetic ring with spin 1/2, defines the geography of rigged strings (which label exact eigenfunctions of the Bethe Ansatz) on the classical configuration space (the set of all positions of the system of r reversed spins). We point out that each I-string originates, in the language of this bijection, from an island of I consecutive reversed spins. We also explain travel of 1-strings along orbits of the translation group of the ring.
引用
收藏
页码:231 / 247
页数:17
相关论文
共 16 条
[1]  
[Anonymous], 1982, EXACTLY SOLVED MODEL
[2]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[3]  
Faddeev L.D., 1981, ZAP NAUCHN SEMIN, V109, P134
[4]  
Gaudin M., 1983, The Bethe wavefunction
[5]  
KEROV SV, 1986, LOMI, V155, P50
[6]   PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX [J].
KNUTH, DE .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 34 (03) :709-&
[7]  
LASCOUX A, 2001, ALGEBRAIC COMBINATOR
[8]   Homotopy of the classical configuration space for the two-magnon sector of a magnetic Heisenberg ring. [J].
Lulek, B ;
Jakubczyk, D .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2003, 1 (01) :132-144
[9]  
Lulek B., 1996, Reports on Mathematical Physics, V38, P267, DOI 10.1016/0034-4877(96)88957-9
[10]   Rigged strings, Bethe Ansatz, and the geometry of the classical configuration space of the Heisenberg magnetic ring [J].
Lulek, T. ;
Lulek, B. ;
Jakubczyk, D. ;
Jakubczyk, P. .
PHYSICA B-CONDENSED MATTER, 2006, 382 (1-2) :162-180