On a class of fractional systems with nonstandard growth conditions

被引:9
作者
Boumazourh, Athmane [1 ]
Azroul, Elhoussine [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Dept Math, POB 1796, Atlas 30000, Fez, Morocco
关键词
Elliptic systems; Generalized fractional Sobolev spaces; Variational methods; Mountain pass theorem; Fractional p(x)-Laplacian; Primary; 35J48; Secondary; 35J50; 46E35; SOBOLEV SPACES;
D O I
10.1007/s11868-019-00310-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of weak solutions for a quasilinear elliptic system involving the fractional pseudo-differential (p(.), q(.))-Laplacian operators. The approach is based on mountain pass theorem in which we prove that the energy functional associated to our problem satisfies the Palais-Smale and two mountain pass geometric conditions.
引用
收藏
页码:805 / 820
页数:16
相关论文
共 20 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 2015, MONOGRAPHS RES NOTES
[3]  
[Anonymous], 2006, Applied nonlinear analysis
[4]   EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. .
ADVANCES IN OPERATOR THEORY, 2019, 4 (02) :539-555
[5]   ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03) :379-389
[6]   Comparison and sub-supersolution principles for the fractional p(x)-Laplacian [J].
Bahrouni, Anouar .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) :1363-1372
[7]  
Bucur C, 2016, LECT NOTES UNIONE MA, V20
[8]  
Caffarelli L., 2012, NONLINEAR PARTIAL DI, V7, P37, DOI DOI 10.1007/978-3-642-25361-4_3
[9]  
Del Pezzo LM, 2017, ADV OPER THEORY, V2, P435, DOI 10.22034/aot.1704-1152
[10]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573