New exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in multi-temperature electron plasmas

被引:31
作者
Liu, Jian-Guo [1 ,2 ,3 ]
Tian, Yu [1 ]
Zeng, Zhi-Fang [4 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Automat, Beijing 100876, Peoples R China
[3] Jiangxi Univ Tradit Chinese Med, Coll Comp, Nanchang 330004, Jiangxi, Peoples R China
[4] Jiangxi Vocat & Tech Coll Commun, Dept Basic, Nanchang 330013, Jiangxi, Peoples R China
来源
AIP ADVANCES | 2017年 / 7卷 / 10期
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; 3-WAVE SOLUTIONS; PAINLEVE TEST; KP; SOLITONS;
D O I
10.1063/1.4999913
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, we aim to introduce a new form of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation for the long waves of small amplitude with slow dependence on the transverse coordinate. By using the Hirota's bilinear form and the extended homoclinic test approach, new exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation are presented. Moreover, the properties and characteristics for these new exact periodic solitary-wave solutions are discussed with some figures. (C) 2017 Author(s).
引用
收藏
页数:14
相关论文
共 53 条
  • [21] A note on the homogeneous balance method
    Fan, EG
    Zhang, HQ
    [J]. PHYSICS LETTERS A, 1998, 246 (05) : 403 - 406
  • [22] Symbolic methods to construct exact solutions of nonlinear partial differential equations
    Hereman, W
    Nuseir, A
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (01) : 13 - 27
  • [23] Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
  • [24] New three-wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
    Liu, Jian-Guo
    Du, Jian-Qiang
    Zeng, Zhi-Fang
    Nie, Bin
    [J]. NONLINEAR DYNAMICS, 2017, 88 (01) : 655 - 661
  • [25] Exact periodic cross-kink wave solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics
    Liu, Jian-Guo
    Du, Jian-Qiang
    Zeng, Zhi-Fang
    Ai, Guo-Ping
    [J]. CHAOS, 2016, 26 (10)
  • [26] Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation
    Lu, Xing
    Ma, Wen-Xiu
    [J]. NONLINEAR DYNAMICS, 2016, 85 (02) : 1217 - 1222
  • [27] Ma WX, 2016, NONLINEAR DYNAM, V84, P923, DOI 10.1007/s11071-015-2539-6
  • [28] Reduced D-Kaup-Newell soliton hierarchies from sl(2,R) and so(3,R)
    Ma, Wen-Xiu
    Zhou, Yuan
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (07)
  • [29] Nonlinear bi-integrable couplings with Hamiltonian structures
    Ma, Wen-Xiu
    Meng, Jinghan
    Zhang, Mengshu
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 127 : 166 - 177
  • [30] A bilinear Backlund transformation of a (3+1)-dimensional generalized KP equation
    Ma, Wen-Xiu
    Abdeljabbar, Alrazi
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1500 - 1504