New exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in multi-temperature electron plasmas

被引:31
作者
Liu, Jian-Guo [1 ,2 ,3 ]
Tian, Yu [1 ]
Zeng, Zhi-Fang [4 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Automat, Beijing 100876, Peoples R China
[3] Jiangxi Univ Tradit Chinese Med, Coll Comp, Nanchang 330004, Jiangxi, Peoples R China
[4] Jiangxi Vocat & Tech Coll Commun, Dept Basic, Nanchang 330013, Jiangxi, Peoples R China
来源
AIP ADVANCES | 2017年 / 7卷 / 10期
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; 3-WAVE SOLUTIONS; PAINLEVE TEST; KP; SOLITONS;
D O I
10.1063/1.4999913
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, we aim to introduce a new form of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation for the long waves of small amplitude with slow dependence on the transverse coordinate. By using the Hirota's bilinear form and the extended homoclinic test approach, new exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation are presented. Moreover, the properties and characteristics for these new exact periodic solitary-wave solutions are discussed with some figures. (C) 2017 Author(s).
引用
收藏
页数:14
相关论文
共 53 条
  • [1] Ablowitz M J., 1990, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform
  • [2] Analytic investigation of the (2+1)-dimensional Schwarzian Korteweg-de Vries equation for traveling wave solutions
    Aslan, Ismail
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 6013 - 6017
  • [3] Constructing rational and multi-wave solutions to higher order NEEs via the Exp-function method
    Aslan, Ismail
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (08) : 990 - 995
  • [4] Symbolic software for the Painleve test of nonlinear ordinary and partial differential equations
    Baldwin, Douglas
    Hereman, Willy
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 (01) : 90 - 110
  • [5] Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity
    Biswas, A.
    Triki, H.
    Labidi, M.
    [J]. PHYSICS OF WAVE PHENOMENA, 2011, 19 (01) : 24 - 29
  • [6] Solitons in Optical Metamaterials by Functional Variable Method and First Integral Approach
    Biswas, Anjan
    Mirzazadeh, M.
    Eslami, Mostafa
    Milovic, Daniela
    Belic, Milivoj
    [J]. FREQUENZ, 2014, 68 (11-12) : 525 - 530
  • [7] Analytical spatiotemporal localizations for the generalized (3+1)-dimensional nonlinear Schrodinger equation
    Dai, Chaoqing
    Wang, Yueyue
    Zhang, Jiefang
    [J]. OPTICS LETTERS, 2010, 35 (09) : 1437 - 1439
  • [8] Dai Z.D., 2008, CHIN PHYS LETT A, V25, P1151
  • [9] Singular periodic soliton solutions and resonance for the Kadomtsev-Petviashvili equation
    Dai, Zhengde
    Li, Shaolin
    Dai, Qingyun
    Huang, Jian
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (04) : 1148 - 1153
  • [10] Exact three-wave solutions for the KP equation
    Dai, Zhengde
    Lin, Songqing
    Fu, Haiming
    Zeng, Xiping
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (05) : 1599 - 1604