The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials

被引:1
作者
Baskakov, A. G. [1 ]
Derbushev, A. V. [1 ]
Shcherbakov, A. O. [1 ]
机构
[1] Voronezh State Univ, Voronezh, Russia
关键词
spectrum of an operator; Dirac operator; asymptotic behaviour of the spectrum; spectral expansions; method of similar operators;
D O I
10.1070/IM2011v075n03ABEH002540
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the method of similar operators to study the spectral properties of Dirac operators, and obtain results on the asymptotic behaviour of the spectra of Dirac operators and the convergence of spectral expansions.
引用
收藏
页码:445 / 469
页数:25
相关论文
共 14 条
[1]  
Agranovich M. S, 1999, GEN METHOD EIGENOSCI, P289
[2]  
[Anonymous], 1987, HARMONIC ANAL LINEAR
[3]  
[Anonymous], MATH USSR IZV, DOI 10.1070/IM1987v028n03ABEH000891
[4]   Spectral analysis of perturbed nonquasianalytic and spectral operators [J].
Baskakov, AG .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1995, 45 (01) :1-31
[5]   Instability zones of periodic 1-dimensional Schrodinger and Dirac operators [J].
Djakov, P. ;
Mityagin, B. S. .
RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (04) :663-766
[6]   Bari-Markus property for Riesz projections of 1D periodic Dirac operators [J].
Djakov, P. ;
Mityagin, B. .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) :443-462
[7]  
DUNFORD N, 1971, LINEAR OPERATORS SPE, V3
[8]  
GOHBERG IC, 1969, TRANSL MATH MONOGR, V18
[9]  
Kato T., 1966, PERTURBATION THEORY
[10]  
Levitan B. M., 1991, Sturm-Liouville and Dirac operators, V59