Hard carbon microspheres derived from resorcinol formaldehyde resin as high-performance anode materials for sodium-ion battery

被引:52
作者
Zhang, Qingyin [1 ]
Deng, Xianmei [1 ]
Ji, Mengge [1 ]
Li, Yufan [2 ]
Shi, Zhiqiang [2 ]
机构
[1] Tiangong Univ, Sch Chem & Chem Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Mat Sci & Engn, Tianjin Key Lab Adv Fibers & Energy Storage, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Resorcinol formaldehyde resin; Spray drying; Anode material; Sodium-ion batteries; HIGH-CAPACITY; LOW-COST; ELECTRODES; INSERTION; NANOFIBERS; STORAGE;
D O I
10.1007/s11581-020-03585-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbon is a good anode material for sodium batteries due to its disordered structures and large interlayer spacing. However, the high cost and low initial Coulomb efficiencies limit its large-scale application. In this study, we introduce a new way to produce the resorcinol formaldehyde resin-derived hard carbon materials by spray drying and carbonization methods. The SEM and XRD indicate that the hard carbon materials have fine spherule shape and larger layer spacing (d(002) = 0.4 nm). With the electrochemical performance test, we confirmed that RFHC-1100 sample exhibited an outstanding reversible specific capacity of 321 mAh/g and high initial Coulomb efficiency of 82% at the current rate of 0.1 C. In addition, the sodium-ion storage mechanism is analyzed through GITT. This work provides a simple and efficient way to convert resorcinol formaldehyde resins into high-capacity hard carbon materials, which opens up new avenues for the preparation of anode materials for sodium-ion batteries.
引用
收藏
页码:4523 / 4532
页数:10
相关论文
共 43 条
[1]   The Development and Future of Lithium Ion Batteries [J].
Blomgren, George E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) :A5019-A5025
[2]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[3]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[4]   Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors [J].
Ding, Jia ;
Wang, Huanlei ;
Li, Zhi ;
Cui, Kai ;
Karpuzov, Dimitre ;
Tan, Xuehai ;
Kohandehghan, Alireza ;
Mitlin, David .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) :941-955
[5]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177
[6]   Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond [J].
Ferrari, AC ;
Robertson, J .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1824) :2477-2512
[7]   Electrochemical intercalation of sodium in graphite [J].
Ge, Pascal ;
Fouletier, Mireille .
Solid State Ionics, 1988, 28-30 :1172-1175
[8]   Sodium-ion batteries: present and future [J].
Hwang, Jang-Yeon ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) :3529-3614
[9]   Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries [J].
Jin, Juan ;
Yu, Sao-jun ;
Shi, Zhi-qiang ;
Wang, Cheng-yang ;
Chong, Chuan-bin .
JOURNAL OF POWER SOURCES, 2014, 272 :800-807
[10]   Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries [J].
Jin, Juan ;
Shi, Zhi-qiang ;
Wang, Cheng-yang .
ELECTROCHIMICA ACTA, 2014, 141 :302-310