Active rotational dynamics of a self-diffusiophoretic colloidal motor

被引:11
|
作者
Reigh, Shang Yik [1 ,2 ,3 ]
Huang, Mu-Jie [4 ]
Loewen, Hartmut [2 ]
Lauga, Eric [5 ]
Kapral, Raymond [4 ]
机构
[1] Seoul Natl Univ, Res Inst Basic Sci, Seoul 08826, South Korea
[2] Heinrich Heine Univ Dusseldorf, Inst Theoretishe Phys Weiche Materie 2, D-40225 Dusseldorf, Germany
[3] Max Planck Inst Intelligente Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany
[4] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5S 3H6, Canada
[5] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会; 新加坡国家研究基金会;
关键词
MULTIPARTICLE COLLISION DYNAMICS; PROPULSION; NANOMOTORS; SIMULATION; TRANSPORT; MODEL;
D O I
10.1039/c9sm01977d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dynamics of a spherical chemically-powered synthetic colloidal motor that operates by a self-diffusiophoretic mechanism and has a catalytic domain of arbitrary shape is studied using both continuum theory and particle-based simulations. The motor executes active rotational motion when self-generated concentration gradients and interactions between the chemical species and colloidal motor surface break spherical symmetry. Local variations of chemical reaction rates on the motor catalytic surface with catalytic domain sizes and shapes provide such broken symmetry conditions. A continuum theoretical description of the active rotational motion is given, along with the results of particle-based simulations of the active dynamics. From these results a detailed description of the factors responsible for the active rotational dynamics can be given. Since active rotational motion often plays a significant part in the nature of the collective dynamics of many-motor systems and can be used to control motor motion in targeted cargo transport, our results should find applications beyond those considered here.
引用
收藏
页码:1236 / 1245
页数:10
相关论文
共 50 条
  • [1] Molecular theory of Langevin dynamics for active self-diffusiophoretic colloids
    Robertson, Bryan
    Schofield, Jeremy
    Gaspard, Pierre
    Kapral, Raymond
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (12):
  • [2] Self-diffusiophoretic colloidal propulsion near a solid boundary
    Mozaffari, Ali
    Sharifi-Mood, Nima
    Koplik, Joel
    Maldarelli, Charles
    PHYSICS OF FLUIDS, 2016, 28 (05)
  • [3] Dynamics of a self-diffusiophoretic particle in shear flow
    Frankel, Alexandra E.
    Khair, Aditya S.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [4] Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic Janus motors
    Huang, Mu-Jie
    Schofield, Jeremy
    Kapral, Raymond
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [5] Mesoscale simulation of self-diffusiophoretic microrotor
    Shen Ming-Ren
    Liu Rui
    Hou Mei-Ying
    Yang Ming-Cheng
    Chen Ke
    ACTA PHYSICA SINICA, 2016, 65 (17)
  • [6] Axisymmetric spheroidal squirmers and self-diffusiophoretic particles
    Poehnl, R.
    Popescu, M. N.
    Uspal, W. E.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (16)
  • [7] Linear and angular motion of self-diffusiophoretic Janus particles
    Burelbach, Jerome
    Stark, Holger
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [8] Numerical simulations of self-diffusiophoretic colloids at fluid interfaces
    Peter, T.
    Malgaretti, P.
    Rivas, N.
    Scagliarini, A.
    Harting, J.
    Dietrich, S.
    arXiv, 2019,
  • [9] Numerical simulations of self-diffusiophoretic colloids at fluid interfaces
    Peter, T.
    Malgaretti, P.
    Rivas, N.
    Scagliarini, A.
    Harting, J.
    Dietrich, S.
    SOFT MATTER, 2020, 16 (14) : 3536 - 3547
  • [10] Fluctuating chemohydrodynamics and the stochastic motion of self-diffusiophoretic particles
    Gaspard, Pierre
    Kapral, Raymond
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (13):