Trainable Regularization for Multi-frame Superresolution

被引:0
|
作者
Klatzer, Teresa [1 ]
Soukup, Daniel [2 ]
Kobler, Erich [1 ]
Hammernik, Kerstin [1 ]
Pock, Thomas [1 ,2 ]
机构
[1] Graz Univ Technol, Inst Comp Graph & Vision, Graz, Austria
[2] AIT, Ctr Vision Automat & Control, Vienna, Austria
来源
PATTERN RECOGNITION (GCPR 2017) | 2017年 / 10496卷
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
IMAGE SUPERRESOLUTION;
D O I
10.1007/978-3-319-66709-6_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a novel method for multi-frame superresolution (SR). Our main goal is to improve the spatial resolution of a multi-line scan camera for an industrial inspection task. High resolution output images are reconstructed using our proposed SR algorithm for multi-channel data, which is based on the trainable reaction-diffusion model. As this is a supervised learning approach, we simulate ground truth data for a real imaging scenario. We show that learning a regularizer for the SR problem improves the reconstruction results compared to an iterative reconstruction algorithm using TV or TGV regularization. We test the learned regularizer, trained on simulated data, on images acquired with the real camera setup and achieve excellent results.
引用
收藏
页码:90 / 100
页数:11
相关论文
共 50 条
  • [1] Parameterized Multisurface Fitting for Multi-Frame Superresolution
    Xu, Hongliang
    Zhou, Fei
    Yang, Fan
    Liao, Qingmin
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (04): : 1001 - 1003
  • [2] Regularization-based multi-frame super-resolution: A systematic review
    Khattab, Mahmoud M.
    Zeki, Akram M.
    Alwan, Ali A.
    Badawy, Ahmed S.
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2020, 32 (07) : 755 - 762
  • [3] Multi-frame thinking
    Pesut, DJ
    NURSING OUTLOOK, 1999, 47 (05) : 200 - 200
  • [4] Multi-frame image Super-resolution by total-variation regularization
    Xu, Z. (yangzij@lut.cn), 1600, Binary Information Press, Flat F 8th Floor, Block 3, Tanner Garden, 18 Tanner Road, Hong Kong (09):
  • [5] Multi-frame super resolution via deep plug-and-play CNN regularization
    Zhao, Shengrong
    Liang, Hu
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (04): : 533 - 555
  • [6] COUPLED MULTI-FRAME SUPER-RESOLUTION WITH DIFFUSIVE MOTION MODEL AND TOTAL VARIATION REGULARIZATION
    Ebrahimi, Mehran
    Vrscay, Edward R.
    Martel, Anne L.
    LNLA: 2009 INTERNATIONAL WORKSHOP ON LOCAL AND NON-LOCAL APPROXIMATION IN IMAGE PROCESSING, 2009, : 62 - +
  • [7] A Hybrid Regularization-Based Multi-Frame Super-Resolution Using Bayesian Framework
    Khattab, Mahmoud M.
    Zeki, Akram M.
    Alwan, Ali A.
    Bouallegue, Belgacem
    Matter, Safaa S.
    Ahmed, Abdelmoty M.
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (01): : 35 - 54
  • [8] Frame Cache Management for Multi-frame Rate Systems
    Hauswiesner, Stefan
    Grasmug, Philipp
    Kalkofen, Denis
    Schmalstieg, Dieter
    ADVANCES IN VISUAL COMPUTING, ISVC 2012, PT II, 2012, 7432 : 285 - 294
  • [9] Adaptive Frame Selection for Multi-frame Super Resolution
    Xue, Cuihong
    Yu, Ming
    Jia, Chao
    Shi, Shuo
    Zhai, Yandong
    ADVANCES IN FUTURE COMPUTER AND CONTROL SYSTEMS, VOL 1, 2012, 159 : 41 - 46
  • [10] Multi-frame compression: theory and design
    Engan, K
    Aase, SO
    Husoy, JH
    SIGNAL PROCESSING, 2000, 80 (10) : 2121 - 2140