High-k Fluoropolymers Dielectrics for Low-Bias Ambipolar Organic Light Emitting Transistors (OLETs)

被引:6
作者
Albeltagi, Ahmed [1 ,2 ]
Gallegos-Rosas, Katherine [2 ]
Soldano, Caterina [2 ]
机构
[1] Univ Eastern Finland, Inst Photon, Dept Phys & Math, Joensuu 80100, Finland
[2] Aalto Univ, Sch Elect Engn, Dept Elect & Nanoengn, Espoo 02150, Finland
基金
芬兰科学院;
关键词
polymer gate dielectrics; high-k; fluoropolymer(s); ferroelectric polymer(s); low-bias; organic light emitting transistor(s); OLET(s); organic light emitting device(s); FIELD-EFFECT TRANSISTORS; GATE DIELECTRICS; GROWTH; FILMS; MECHANISM;
D O I
10.3390/ma14247635
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Organic light emitting transistors (OLETs) combine, in the same device, the function of an electrical switch with the capability of generating light under appropriate bias conditions. In this work, we demonstrate how engineering the dielectric layer based on high-k polyvinylidene fluoride (PVDF)-based polymers can lead to a drastic reduction of device driving voltages and the improvement of its optoelectronic properties. We first investigated the morphology and the dielectric response of these polymer dielectrics in terms of polymer (P(VDF-TrFE) and P(VDF-TrFE-CFE)) and solvent content (cyclopentanone, methylethylketone). Implementing these high-k PVDF-based dielectrics enabled low-bias ambipolar organic light emitting transistors, with reduced threshold voltages (<20 V) and enhanced light output (compared to conventional polymer reference), along with an overall improvement of the device efficiency. Further, we preliminary transferred these fluorinated high-k dielectric films onto a plastic substrate to enable flexible light emitting transistors. These findings hold potential for broader exploitation of the OLET platform, where the device can now be driven by commercially available electronics, thus enabling flexible low-bias organic electronic devices.
引用
收藏
页数:15
相关论文
共 51 条
[1]   Phase transitions and ferroelectric relaxor behavior in P(VDF-TrFE-CFE) terpolymers [J].
Bao, Hui-Min ;
Song, Jiao-Fan ;
Zhang, Juan ;
Shen, Qun-Dong ;
Yang, Chang-Zheng ;
Zhang, Q. M. .
MACROMOLECULES, 2007, 40 (07) :2371-2379
[2]  
Bao Z., 2018, Organic Field-Effect Transistors, DOI 10.1201/9781420008012
[3]   Annealing effects on the Curie transition temperature and melting temperature of poly(vinylidene fluoride/trifluoroethylene) single crystalline films [J].
Barique, MA ;
Ohigashi, H .
POLYMER, 2001, 42 (11) :4981-4987
[4]   The role of chemical design in the performance of organic semiconductors [J].
Bronstein, Hugo ;
Nielsen, Christian B. ;
Schroeder, Bob C. ;
McCulloch, Iain .
NATURE REVIEWS CHEMISTRY, 2020, 4 (02) :66-77
[5]  
Capelli R, 2010, NAT MATER, V9, P496, DOI [10.1038/NMAT2751, 10.1038/nmat2751]
[6]   P(VDF-TrFE-CFE) terpolymer thin-film for high performance nonvolatile memory [J].
Chen, Xin ;
Liu, Lu ;
Liu, Shi-Zheng ;
Cui, Yu-Shuang ;
Chen, Xiang-Zhong ;
Ge, Hai-Xiong ;
Shen, Qun-Dong .
APPLIED PHYSICS LETTERS, 2013, 102 (06)
[7]   What is the mechanism of oriented crystal growth on rubbed polymer substrates?: Topography vs epitaxy [J].
Damman, P ;
Coppée, S ;
Geskin, VM ;
Lazzaroni, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (51) :15166-15167
[8]   Spatially correlated charge transport in organic thin film transistors [J].
Dinelli, F ;
Murgia, M ;
Levy, P ;
Cavallini, M ;
Biscarini, F ;
de Leeuw, DM .
PHYSICAL REVIEW LETTERS, 2004, 92 (11) :116802-1
[9]   Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics [J].
Facchetti, A ;
Yoon, MH ;
Marks, TJ .
ADVANCED MATERIALS, 2005, 17 (14) :1705-1725
[10]  
Hatton RA, 2018, COMPREHENSIVE GUIDE TO SOLAR ENERGY SYSTEMS: WITH SPECIAL FOCUS ON PHOTOVOLTAIC SYSTEMS, P255, DOI 10.1016/B978-0-12-811479-7.00012-9