Three-dimensional topological solitons in PT-symmetric optical lattices

被引:69
作者
Kartashov, Yaroslav V. [1 ,2 ]
Hang, Chao [3 ,4 ,5 ]
Huang, Guoxiang [3 ,4 ,5 ]
Torner, Lluis [1 ,6 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[2] Russian Acad Sci, Inst Spect, Troitsk 142190, Moscow Region, Russia
[3] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[4] East China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China
[5] NYU Shanghai, NYU ECNU Joint Inst Phys, Shanghai 200062, Peoples R China
[6] Univ Politecn Cataluna, ES-08034 Barcelona, Spain
基金
中国国家自然科学基金;
关键词
PARITY-TIME SYMMETRY; LIGHT BULLETS; MULTIDIMENSIONAL SOLITONS; VECTOR SOLITONS; STABILITY; COLLAPSE; GENERATION; DISPERSION; SPECTRA; MEDIA;
D O I
10.1364/OPTICA.3.001048
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We address the properties of fully three-dimensional solitons in complex parity-time (PT)-symmetric periodic lattices with focusing Kerr nonlinearity, and uncover that such lattices can stabilize both fundamental and vortex-carrying soliton states. The imaginary part of the lattice induces internal currents in the solitons that strongly affect their domains of existence and stability. The domain of stability for fundamental solitons can extend nearly up to the PT-symmetry breaking point, where the linear lattice spectrum becomes complex. Vortex solitons feature spatially asymmetric profiles in the PT-symmetric lattices, but they are found to still exist as stable states within narrow regions. Our results provide the first example of continuous families of stable three-dimensional propagating solitons supported by complex potentials. (C) 2016 Optical Society of America
引用
收藏
页码:1048 / 1055
页数:8
相关论文
共 74 条
[1]   Solitons in PT-symmetric nonlinear lattices [J].
Abdullaev, Fatkhulla Kh. ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Zezyulin, Dmitry A. .
PHYSICAL REVIEW A, 2011, 83 (04)
[2]   Spectral renormalization method for computing self-localized solutions to nonlinear systems [J].
Ablowitz, MJ ;
Musslimani, ZH .
OPTICS LETTERS, 2005, 30 (16) :2140-2142
[3]   MULTIDIMENSIONAL SOLITONS IN FIBER ARRAYS [J].
ACEVES, AB ;
DEANGELIS, C ;
RUBENCHIK, AM ;
TURITSYN, SK .
OPTICS LETTERS, 1994, 19 (05) :329-331
[4]   ENERGY LOCALIZATION IN NONLINEAR FIBER ARRAYS - COLLAPSE-EFFECT COMPRESSOR [J].
ACEVES, AB ;
LUTHER, GG ;
DEANGELIS, C ;
RUBENCHIK, AM ;
TURITSYN, SK .
PHYSICAL REVIEW LETTERS, 1995, 75 (01) :73-76
[5]   Three-dimensional matter-wave vortices in optical lattices [J].
Alexander, TJ ;
Ostrovskaya, EA ;
Sukhorukov, AA ;
Kivshar, YS .
PHYSICAL REVIEW A, 2005, 72 (04)
[6]  
[Anonymous], 2005, LECT NOTES PHYS, DOI DOI 10.1007/B11728
[7]   Multidimensional solitons in periodic potentials [J].
Baizakov, BB ;
Malomed, BA ;
Salerno, M .
EUROPHYSICS LETTERS, 2003, 63 (05) :642-648
[8]   Collapse arrest and soliton stabilization in nonlocal nonlinear media [J].
Bang, O ;
Krolikowski, W ;
Wyller, J ;
Rasmussen, JJ .
PHYSICAL REVIEW E, 2002, 66 (04) :5
[9]   Analytical light bullet solutions to the generalized (3+1)-dimensional nonlinear schrodinger equation [J].
Belic, Milivoj ;
Petrovic, Nikola ;
Zhong, Wei-Ping ;
Xie, Rui-Hua ;
Chen, Goong .
PHYSICAL REVIEW LETTERS, 2008, 101 (12)
[10]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018