Effective estimates for the distribution of values of Euler products

被引:1
作者
Girondo, E [1 ]
Steuding, J [1 ]
机构
[1] Univ Autonoma Madrid, C Univ Cantoblanco, Dept Matemat, E-28049 Madrid, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2005年 / 145卷 / 02期
关键词
Euler products; almost periodic; Kronecker's approximation theorem;
D O I
10.1007/s00605-005-0305-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove effective upper bounds for the almost periodicity of polynomial Euler products L(s) in the half-plane of absolute convergence. From this we deduce estimates for the roots of the equation L(s) = c, where c is any non-zero complex number which is attained by Y(s). The method relies mainly on effective diophantine approximation.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 10 条
[1]   RECURRENCE IN TOPOLOGICAL DYNAMICS AND THE RIEMANN-HYPOTHESIS [J].
BAGCHI, B .
ACTA MATHEMATICA HUNGARICA, 1987, 50 (3-4) :227-240
[2]  
Bagchi B., 1981, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series
[3]  
Baker A., 1975, Transcendental number theory
[4]  
Bohr, 1911, NACHR AKAD WISS GOTT, V1911, P409
[6]  
BOHR H, 1910, NACHR AKAD WISS GOTT, V2, P303
[7]   EFFECTIVE SIMULTANEOUS APPROXIMATION OF COMPLEX NUMBERS BY CONJUGATE ALGEBRAIC-INTEGERS [J].
RIEGER, GJ .
ACTA ARITHMETICA, 1993, 63 (04) :325-334
[8]  
STEUDING J, 2005, J THEOR NOMBRES BORD, V16, P221
[9]  
VORONIN SM, 1975, IZV AKAD NAUK SSSR, V9, P443
[10]  
WALDSCHMIDT M, 1980, ACTA ARITH, V37, P257