Mitochondrial Dysregulation in the Pathogenesis of Diabetes: Potential for Mitochondrial Biogenesis-Mediated Interventions

被引:95
作者
Joseph, Anna-Maria [1 ,2 ]
Joanisse, Denis R. [3 ]
Baillot, Richard G. [4 ]
Hood, David A. [1 ,2 ,5 ]
机构
[1] York Univ, Dept Biol, Toronto, ON M3J 1P3, Canada
[2] York Univ, Muscle Hlth Res Ctr MHRC, Toronto, ON M3J 1P3, Canada
[3] Univ Laval, Div Kinesiol, Quebec City, PQ G1K 7P4, Canada
[4] Univ Laval, Dept Cardiac Surg, Quebec City, PQ G1V 4G5, Canada
[5] York Univ, Sch Kinesiol & Hlth Sci, Toronto, ON M3J 1P3, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
HUMAN SKELETAL-MUSCLE; RECEPTOR-GAMMA COACTIVATOR-1-ALPHA; PROTEIN-KINASE ACTIVITY; FATTY-ACID OXIDATION; INSULIN-RESISTANCE; CALORIE RESTRICTION; LIPID-CONTENT; WEIGHT-LOSS; GENE-EXPRESSION; LIFE-SPAN;
D O I
10.1155/2012/642038
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Muscle mitochondrial metabolism is a tightly controlled process that involves the coordination of signaling pathways and factors from both the nuclear and mitochondrial genomes. Perhaps the most important pathway regulating metabolism in muscle is mitochondrial biogenesis. In response to physiological stimuli such as exercise, retrograde signaling pathways are activated that allow crosstalk between the nucleus and mitochondria, upregulating hundreds of genes and leading to higher mitochondrial content and increased oxidation of substrates. With type 2 diabetes, these processes can become dysregulated and the ability of the cell to respond to nutrient and energy fluctuations is diminished. This, coupled with reduced mitochondrial content and altered mitochondrial morphology, has been directly linked to the pathogenesis of this disease. In this paper, we will discuss our current understanding of mitochondrial dysregulation in skeletal muscle as it relates to type 2 diabetes, placing particular emphasis on the pathways of mitochondrial biogenesis and mitochondrial dynamics, and the therapeutic value of exercise and other interventions.
引用
收藏
页数:16
相关论文
共 158 条
[1]   Mitochondria in skeletal muscle: Adaptable rheostats of apoptotic susceptibility [J].
Adhihetty, Peter J. ;
O'Leary, Mchael F. N. ;
Hood, David A. .
EXERCISE AND SPORT SCIENCES REVIEWS, 2008, 36 (03) :116-121
[2]   Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli [J].
Adhihetty, PJ ;
Ljubicic, V ;
Menzies, KJ ;
Hood, DA .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2005, 289 (04) :C994-C1001
[3]   OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 [J].
Alexander, C ;
Votruba, M ;
Pesch, UEA ;
Thiselton, DL ;
Mayer, S ;
Moore, A ;
Rodriguez, M ;
Kellner, U ;
Leo-Kottler, B ;
Auburger, G ;
Bhattacharya, SS ;
Wissinger, B .
NATURE GENETICS, 2000, 26 (02) :211-215
[4]   Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration [J].
Anderson, Ethan J. ;
Yamazaki, Hanae ;
Neufer, P. Darrell .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (43) :31257-31266
[5]   Peroxisome Proliferator-activated Receptor γ Co-activator 1α (PGC-1α) and Sirtuin 1 (SIRT1) Reside in Mitochondria POSSIBLE DIRECT FUNCTION IN MITOCHONDRIAL BIOGENESIS [J].
Aquilano, Katia ;
Vigilanza, Paola ;
Baldelli, Sara ;
Pagliei, Beatrice ;
Rotilio, Giuseppe ;
Ciriolo, Maria Rosa .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (28) :21590-21599
[6]   Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation [J].
Arnoult, D ;
Grodet, A ;
Lee, YJ ;
Estaquier, J ;
Blackstone, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (42) :35742-35750
[7]   Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle -: Effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor α, and interleukin-6 [J].
Bach, D ;
Naon, D ;
Pich, S ;
Soriano, FX ;
Vega, N ;
Rieusset, J ;
Laville, M ;
Guillet, C ;
Boirie, Y ;
Wallberg-Henriksson, H ;
Manco, M ;
Calvani, M ;
Castagneto, M ;
Palacín, M ;
Mingrone, G ;
Zierath, JR ;
Vidal, H ;
Zorzano, A .
DIABETES, 2005, 54 (09) :2685-2693
[8]   Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism -: A novel regulatory mechanism altered in obesity [J].
Bach, D ;
Pich, S ;
Soriano, FX ;
Vega, N ;
Baumgartner, B ;
Oriola, J ;
Daugaard, JR ;
Lloberas, J ;
Camps, M ;
Zierath, JR ;
Rabasa-Lhoret, R ;
Wallberg-Henriksson, H ;
Laville, M ;
Palacín, M ;
Vidal, H ;
Rivera, F ;
Brand, M ;
Zorzano, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (19) :17190-17197
[9]   SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice [J].
Banks, Alexander S. ;
Kon, Ning ;
Knight, Colette ;
Matsumoto, Michihiro ;
Gutierrez-Juarez, Roger ;
Rossetti, Luciano ;
Gu, Wei ;
Accili, Domenico .
CELL METABOLISM, 2008, 8 (04) :333-341
[10]   Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients' cells lacking its components [J].
Bastin, Jean ;
Aubey, Flore ;
Rotig, Agnes ;
Munnich, Arnold ;
Djouadi, Fatima .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2008, 93 (04) :1433-1441