Resonant optical solitons with anti-cubic nonlinearity

被引:33
作者
Biswas, Anjan [1 ,2 ,3 ]
Jawad, Anwar Ja'afar Mohamad [4 ]
Zhou, Qin [5 ]
机构
[1] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[2] Al Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 13318, Saudi Arabia
[3] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[4] Al Rafidain Univ Coll, Baghdad 00964, Iraq
[5] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
来源
OPTIK | 2018年 / 157卷
关键词
Resonant solitons; Anti-cubic nonlinearity; Modified simple equation method; TIME-DEPENDENT COEFFICIENTS; SCHRODINGERS EQUATION; DECOMPOSITION METHOD; 1-SOLITON SOLUTION; LAW MEDIA;
D O I
10.1016/j.ijleo.2017.11.125
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This work obtains the integration of the resonant nonlinear Schrodinger's equation, with anti-cubic nonlinearity, in presence of perturbation terms that are considered with full non linearity. The csch method, extended tanh-coth method and the modified simple equation method are applied to extract the analytical soliton solution. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:525 / 531
页数:7
相关论文
共 20 条
[1]   New methods to solve the resonant nonlinear Schrodinger's equation with time-dependent coefficients [J].
Aghdaei, Mehdi Fazli ;
Adibi, Hojatollah .
OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (09)
[2]   Kerr-law nonlinearity of the resonant nonlinear Schrodinger's equation with time-dependent coefficients [J].
Aghdaei, Mehdi Fazli .
OPTICAL AND QUANTUM ELECTRONICS, 2017, 49 (07)
[3]   Optical solitons and stability analysis of the NLSE with anti cubic nonlinearity [J].
Asian, Ebru Cavlak ;
Inc, Mustafa ;
Baleanu, Dumitru .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 109 :784-793
[4]   Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations [J].
Biswas, Anjan ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Triki, Houria ;
Belic, Milivoj ;
Alqahtani, Rubayyi T. .
OPTIK, 2017, 145 :14-17
[5]   Travelling wave solutions of the non-linear Schrodinger's equation in non-Kerr law media [J].
Biswas, Anjan ;
Milovic, Daniela .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :1993-1998
[6]   1-Soliton solution of 1+2 dimensional nonlinear Schrodinger's equation in power law media [J].
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :1830-1833
[7]   Wobbling phenomena with logarithmic law nonlinear Schrodinger equations for incoherent spatial Gaussons [J].
Crutcher, Sihon H. ;
Osei, Albert J. ;
Biswas, Anjan .
OPTIK, 2013, 124 (21) :4793-4797
[8]   Optical solitons for the resonant nonlinear Schrodinger's equation with time-dependent coefficients by the first integral method [J].
Eslami, M. ;
Mirzazadeh, M. ;
Vajargah, B. Fathi ;
Biswas, Anjan .
OPTIK, 2014, 125 (13) :3107-3116
[9]   Envelope solitons of nonlinear Schrodinger equation with an anti-cubic nonlinearity [J].
Fedele, R ;
Schamel, H ;
Karpman, VI ;
Shukla, PK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (04) :1169-1173
[10]   Upper estimates for a moving boundary problem for resonant nonlinear schrodinger equations [J].
Flavin, J. N. ;
Rogers, C. .
STUDIES IN APPLIED MATHEMATICS, 2008, 121 (02) :189-198