Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds

被引:15
|
作者
Xiong, Changwei [1 ]
机构
[1] Australian Natl Univ, Math Sci Inst, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
Steklov eigenvalue; Laplacian eigenvalue; Riemannian manifold; Weyl eigenvalue asymptotics; SPECTRAL GEOMETRY;
D O I
10.1016/j.jfa.2018.09.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that in Riemannian manifolds the k-th Steklov eigenvalue on a domain and the square root of the k-th Laplacian eigenvalue on its boundary can be mutually controlled in terms of the maximum principal curvature of the boundary under sectional curvature conditions. As an application, we derive a Weyl-type upper bound for Steklov eigenvalues. A Pohozaev-type identity for harmonic functions on the domain and the min-max variational characterization of both eigenvalues are important ingredients. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:3245 / 3258
页数:14
相关论文
共 50 条