Modified maximum likelihood estimation in one-parameter exponential family models

被引:3
作者
Cordeiro, GM
Botter, DA
Ferrari, SLP
Cribari-Neto, F
机构
[1] Univ Fed Pernambuco, Dept Estatist, BR-50740540 Recife, PE, Brazil
[2] Univ Sao Paulo, Dept Estatist, BR-05315970 Sao Paulo, Brazil
关键词
asymptotic expansion; Bartlett-type correction; Edgeworth expansion; exponential family; maximum likelihood estimation; standardized maximum likelihood estimate;
D O I
10.1080/03610929908832289
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new pivotal quantity which is a function of the maximum likelihood estimate of a scalar parameter theta and whose distribution is standard normal excluding terms of order O(n(-3/2)) and smaller, where n is the sample size. The proposed pivot is a polynomial transformation of the standardized maximum likelihood estimate of at most third degree. We apply our main result to the one-parameter exponential family model and to a number of special distributions of this family. Some simulation results illustrate the superiority of our pivotal quantity over the usual standardized maximum likelihood estimate with regard to third-order asymptotic theory.
引用
收藏
页码:157 / 178
页数:22
相关论文
共 36 条
[1]  
ABELL ML, 1994, MAPLE V HDB
[2]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[3]  
[Anonymous], 1983, THESIS U CALIFORNIA
[4]   VALIDITY OF FORMAL EDGEWORTH EXPANSION [J].
BHATTACHARYA, RN ;
GHOSH, JK .
ANNALS OF STATISTICS, 1978, 6 (02) :434-451
[5]  
Bhattacharya RN., 1976, NORMAL APPROXIMATION
[6]   Cumulative frequency functions [J].
Burr, IW .
ANNALS OF MATHEMATICAL STATISTICS, 1942, 13 :215-232
[7]   Bartlett corrections for one-parameter exponential family models [J].
Cordeiro, GM ;
CribariNeto, F ;
Aubin, ECQ ;
Ferrari, SLP .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1995, 53 (3-4) :211-231
[8]  
CORDEIRO GM, 1991, BIOMETRIKA, V78, P573
[9]   Generalized Bartlett correction [J].
Cordeiro, GM ;
Ferrari, SLP .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (02) :509-527
[10]  
COX D. R., 2000, Theoretical Statistics