Airborne multispectral LiDAR point cloud classification with a feature Reasoning-based graph convolution network

被引:29
作者
Zhao, Peiran [1 ]
Guan, Haiyan [1 ]
Li, Dilong [2 ]
Yu, Yongtao [3 ]
Wang, Hanyun [4 ]
Gao, Kyle [5 ,6 ]
Marcato Junior, Jose [7 ]
Li, Jonathan [5 ,6 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
[2] Huaqiao Univ, Xiamen Key Lab Comp Vis & Pattern Recognit, Fujian Key Lab Big Data Intelligence & Secur, Dept Comp Sci & Technol, Quanzhou, Peoples R China
[3] Huaiyin Inst Technol, Fac Comp & Software Engn, Huaian 223003, JS, Peoples R China
[4] Informat Engn Univ, Sch Surveying & Mapping, Zhengzhou 45000, Henan, Peoples R China
[5] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[6] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
[7] Univ Fed Mato Grosso do Sul, Fac Engn Architecture & Urbanism & Geog, BR-79070900 Campo Grande, MS, Brazil
关键词
Multispectral LiDAR; Point cloud classification; Deep learning; Graph convolution network; Feature reasoning; LAND-COVER CLASSIFICATION;
D O I
10.1016/j.jag.2021.102634
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This paper presents a feature reasoning-based graph convolution network (FR-GCNet) to improve the classification accuracy of airborne multispectral LiDAR (MS-LiDAR) point clouds. In the FR-GCNet, we directly assign semantic labels to all points by exploring representative features both globally and locally. Based on the graph convolution network (GCN), a global reasoning unit is embedded to obtain the global contextual feature by revealing spatial relationships of points, while a local reasoning unit is integrated to dynamically learn edge features with attention weights in each local graph. Extensive experiments on the Titan MS-LiDAR data showed that the proposed FR-GCNet achieved a promising classification performance with an overall accuracy of 93.55%, an average F1-score of 78.61%, and a mean Intersection over Union (IoU) of 66.78%. Comparative experimental results demonstrated the superiority of the FR-GCNet against other state-of-the-art approaches.
引用
收藏
页数:12
相关论文
共 50 条
[11]   Deep Spatial Graph Convolution Network with Adaptive Spectral Aggregated Residuals for Multispectral Point Cloud Classification [J].
Wang, Qingwang ;
Zhang, Zifeng ;
Chen, Xueqian ;
Wang, Zhifeng ;
Song, Jian ;
Shen, Tao .
REMOTE SENSING, 2023, 15 (18)
[12]   A Maximum Entropy-Based Optimal Neighbor Selection for Multispectral Airborne LiDAR Point Cloud Classification [J].
Jiang, Ge ;
Yan, Wai Yeung ;
Lichti, Derek D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[13]   Multiscale Adjacency Matrix CNN: Learning on Multispectral LiDAR Point Cloud via Multiscale Local Graph Convolution [J].
Yang, Jian ;
Luo, Binhan ;
Gan, Ruilin ;
Wang, Ao ;
Shi, Shuo ;
Du, Lin .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 :855-870
[14]   HA-GCN: An ALS point cloud classification method based on Height-Aware Graph Convolution Network [J].
Wen, Pei ;
Cheng, Yinglei ;
Wang, Peng ;
Zhao, Mingjun ;
Zhang, Bixiu .
THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
[15]   Multispectral LiDAR Point Cloud Classification Using SE-PointNet plus [J].
Jing, Zhuangwei ;
Guan, Haiyan ;
Zhao, Peiran ;
Li, Dilong ;
Yu, Yongtao ;
Zang, Yufu ;
Wang, Hanyun ;
Li, Jonathan .
REMOTE SENSING, 2021, 13 (13)
[16]   GRAPH NEURAL NETWORK WITH MULTI-KERNEL LEARNING FOR MULTISPECTRAL POINT CLOUD CLASSIFICATION [J].
Zhang, Zifeng ;
Wang, Qingwang ;
Wang, Mingye ;
Shen, Tao .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :970-973
[17]   Deep Learning Point Cloud Classification Method Based on Fusion Graph Convolution [J].
Xu Tianye ;
Ding Haiyong .
LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (02)
[18]   Multikernel Graph Structure Learning for Multispectral Point Cloud Classification [J].
Wang, Qingwang ;
Zhang, Zifeng ;
Huang, Jiangbo ;
Shen, Tao ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 :5637-5650
[19]   Airborne Light Detection and Ranging Point Cloud Classification via Graph Convolution and PointNet Integration [J].
Miao Jianqi ;
Wang Hongtao ;
Tian Puguang .
LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (22)
[20]   Graph Attention Feature Fusion Network for ALS Point Cloud Classification [J].
Yang, Jie ;
Zhang, Xinchang ;
Huang, Yun .
SENSORS, 2021, 21 (18)