A ONE-PARAMETER FAMILY OF PICK FUNCTIONS DEFINED BY THE GAMMA FUNCTION AND RELATED TO THE VOLUME OF THE UNIT BALL IN n-SPACE

被引:22
作者
Berg, Christian [1 ]
Pedersen, Henrik L. [2 ]
机构
[1] Univ Copenhagen, Inst Math Sci, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Fac Life Sci, Dept Basic Sci & Environm, DK-1871 Frederiksberg C, Denmark
关键词
Gamma function; completely monotonic function; Pick function; MONOTONIC FUNCTIONS;
D O I
10.1090/S0002-9939-2010-10636-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that F(a)(x) = ln Gamma(x + 1)/x ln(ax) can be considered as a Pick function when a >= 1, i.e. extends to a holomorphic function mapping the upper half-plane into itself. We also consider the function f(x) = (pi(x/2)/Gamma(1 + x/2))(1/(x ln x)) and show that In f(x + 1) is a Stieltjes function and that f(x + 1) is completely monotonic on ]0, infinity[. In particular, f(n) = Omega(1/(n ln n))(n), n >= 2, is a Hausdorff moment sequence. Here Omega(n) is the volume of the unit ball in Euclidean n-space.
引用
收藏
页码:2121 / 2132
页数:12
相关论文
共 21 条
[1]  
Akhiezer N. I., 1965, CLASSICAL MOMENT PRO
[2]  
Alzer H, 2008, MEDITERR J MATH, V5, P395, DOI 10.1007/s00009-008-0158-x
[3]  
Anderson G.D., 1989, EXPO MATH, V7, P97
[4]   A monotoneity property of the gamma function [J].
Anderson, GD ;
Qiu, SL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) :3355-3362
[5]  
ANDERSON GD, 2001, PAPERS ANAL, V526, P83
[6]  
[Anonymous], 1975, Potential Theory on Locally Compact Abelian Groups
[7]  
[Anonymous], 1984, GRAD TEXTS MATH
[8]  
[Anonymous], 2004, Mediterr. J. Math, DOI DOI 10.1007/S00009-004-0022-6
[9]  
[Anonymous], 1889, J MATH PURE APPL
[10]  
Artin E., 1964, The Gamma Function