Oscillation of linear difference equations with deviating arguments

被引:7
作者
Koplatadze, R [1 ]
机构
[1] Georgian Acad Sci, A Razmadze Math Inst, GE-380093 Tbilisi, Georgia
关键词
oscillation; difference equations; deviating arguments;
D O I
10.1016/S0898-1221(01)00171-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following difference equation with deviating arguments: Delta (2)u(k) + Sigma (m)(j=1) p(j)(k)u(sigma (j)(k)) = 0, is considered, where Deltau(k) = u(k + 1) - u(k), Delta (2) = Delta circle Delta, p(j) (j = 1,..., m) is a sequence of nonnegative numbers, sigma (j) : N --> N and lim(k -->+infinity) sigma (j)(k) = +infinity (j = 1,..., m). In the paper, sufficient conditions are established for all proper solutions of the above equation to be oscillatory. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:477 / 486
页数:10
相关论文
共 9 条
[1]  
Agarwal Ravil P, 2000, DIFFERENCE EQUATIONS
[2]  
[Anonymous], 2000, OSCILLATION THEORY D, DOI DOI 10.1007/978-94-015-9401-1
[3]  
CHENG SS, 1991, FUNCIALAJ EKVACIOJ, V34, P223
[4]  
Edwards R.E., 1965, Functional Analysis
[5]  
GRACE SR, 1994, UTILITAS MATHEMATICA, V45, P197
[6]  
Gy??ri I., 1991, OSCILLATION THEORY D
[7]   SPECTRAL ANALYSIS OF 2ND ORDER DIFFERENCE EQUATIONS [J].
HINTON, DB ;
LEWIS, RT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 63 (02) :421-438
[8]   RICCATI TYPE TRANSFORMATIONS FOR 2ND-ORDER LINEAR DIFFERENCE-EQUATIONS [J].
HOOKER, JW ;
PATULA, WT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 82 (02) :451-462
[9]   RICCATI TYPE TRANSFORMATIONS FOR 2ND-ORDER LINEAR DIFFERENCE-EQUATIONS .2. [J].
KWONG, MK ;
HOOKER, JW ;
PATULA, WT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 107 (01) :182-196