A novel approach for quantification of time-intensity curves in a DCE-MRI image series with an application to prostate cancer

被引:19
作者
Fabijanska, Anna [1 ]
机构
[1] Lodz Univ Technol, Inst Appl Comp Sci, 18-22 Stefanowskiego Str, PL-90924 Lodz, Poland
关键词
DCE-MRI; Time-intensity curve; Curve shape pattern; Prostate cancer; Bayes classifier; Heuristic rules; PARAMETERS; MODEL; DTPA;
D O I
10.1016/j.compbiomed.2016.04.010
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper considers the problem of an automatic quantification of DCE-MRI curve shape patterns. In particular, the semi-quantitative approach which classifies DCE time-intensity curves into clusters representing the tree main shape patterns is proposed. The approach combines heuristic rules with the naive Bayes classifier. In particular, the descriptive parameters are firstly derived from pixel-by-pixel analysis of the DCE time intensity curves and then used to recognise the curves which without a doubt represent the three main shape patterns. These curves are next used to train the naive Bayes classifier intended to classify the remaining curves within the dataset. Results of applying the proposed approach to the DCE-MRI scans of patients with prostate cancer are presented and discussed. Additionally, the overall performance of the approach is estimated through the comparison with the ground truth results provided by the expert. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 23 条
  • [1] Barentsz J., 2014, TECHNICAL REPORT
  • [2] Barnes Stephanie L, 2012, Pharmaceutics, V4, P442, DOI 10.3390/pharmaceutics4030442
  • [3] PHARMACOKINETIC PARAMETERS IN CNS GD-DTPA ENHANCED MR IMAGING
    BRIX, G
    SEMMLER, W
    PORT, R
    SCHAD, LR
    LAYER, G
    LORENZ, WJ
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1991, 15 (04) : 621 - 628
  • [4] DCE-MRI in hepatocellular carcinoma-clinical and therapeutic image biomarker
    Chen, Bang-Bin
    Shih, Tiffany Ting-Fang
    [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (12) : 3125 - 3134
  • [5] Diffusion-weighted Imaging Improves the Diagnostic Accuracy of Conventional 3.0-T Breast MR Imaging
    El Khouli, Riham H.
    Jacobs, Michael A.
    Mezban, Sarah D.
    Huang, Peng
    Kamel, Ihab R.
    Macura, Katarzyna J.
    Bluemke, David A.
    [J]. RADIOLOGY, 2010, 256 (01) : 64 - 73
  • [6] Dynamic Contrast-Enhanced MRI of the Breast: Quantitative Method for Kinetic Curve Type Assessment
    El Khouli, Riham H.
    Macura, Katarzyna J.
    Jacobs, Michael A.
    Khalil, Tarek H.
    Kamel, Ihab R.
    Dwyer, Andrew
    Bluemke, David A.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 193 (04) : W295 - W300
  • [7] DCE-MRI Pixel-by-Pixel Quantitative Curve Pattern Analysis and Its Application to Osteosarcoma
    Guo, Jun-Yu
    Reddick, Wilburn E.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2009, 30 (01) : 177 - 184
  • [8] Jansen S. A., 2009, MAGN RESON MED, V59, P832
  • [9] Multiparametric MR Imaging with Ultrasound Guidance Improves Accuracy of Prostate Cancer Biopsies
    McDowell, Monica
    [J]. RADIOLOGIC TECHNOLOGY, 2023, 94 (06) : 456 - 457
  • [10] Dynamic breast MR imaging: Are signal intensity time course data useful for differential diagnosis of enhancing lesions?
    Kuhl, CK
    Mielcareck, P
    Klaschik, S
    Leutner, C
    Wardelmann, E
    Gieseke, J
    Schild, HH
    [J]. RADIOLOGY, 1999, 211 (01) : 101 - 110