Intersections of polynomial orbits, and a dynamical Mordell-Lang conjecture

被引:50
作者
Ghioca, Dragos [1 ]
Tucker, Thomas J. [2 ]
Zieve, Michael E. [3 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
[2] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[3] Ctr Commun Res, Princeton, NJ 08540 USA
关键词
D O I
10.1007/s00222-007-0087-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if nonlinear complex polynomials of the same degree have orbits with infinite intersection, then the polynomials have a common iterate. We also prove a special case of a conjectured dynamical analogue of the Mordell-Lang conjecture.
引用
收藏
页码:463 / 483
页数:21
相关论文
共 27 条
[1]  
AFHALLSTROM G, 1957, ACTA ACAD ABO B, V21, P20
[2]  
Benedetto RL, 2005, INT MATH RES NOTICES, V2005, P3855
[3]   The Diophantine equation f(x)=g(y) [J].
Bilu, YF ;
Tichy, RF .
ACTA ARITHMETICA, 2000, 95 (03) :261-288
[4]   The Diophantine equation x(x+1)... (x+(m-1))+r=yn [J].
Bilu, YF ;
Kulkarni, M ;
Sury, B .
ACTA ARITHMETICA, 2004, 113 (04) :303-308
[5]   Diophantine equations and Bernoulli polynomials [J].
Bilu, YF ;
Brindza, B ;
Kirschenhofer, P ;
Pintér, A ;
Tichy, RF ;
Schinzel, A .
COMPOSITIO MATHEMATICA, 2002, 131 (02) :173-188
[6]  
CALL GS, 1993, COMPOS MATH, V89, P163
[7]  
DENIS L, 1992, OHIO ST U M, V2, P285
[8]  
Faltings G., 1994, Perspect. Math., P175
[9]  
GHIOCA D, ARXIV07054047MATHNT
[10]  
GHIOCA D, IN PRESS COMPOS MATH