USING SUPPORT VECTOR MACHINES FOR ANOMALOUS CHANGE DETECTION

被引:4
作者
Steinwart, Ingo [1 ]
Theiler, James [1 ]
Llamocca, Daniel [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2010年
关键词
anomaly; change detection; machine learning; classification; support vector machine; graphical processing unit; HYPERSPECTRAL CHANGE DETECTION;
D O I
10.1109/IGARSS.2010.5651836
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We cast anomalous change detection as a binary classification problem, and use a support vector machine (SVM) to build a detector that does not depend on assumptions about the underlying data distribution. To speed up the computation, our SVM is implemented, in part, on a graphical processing unit. Results on real and simulated anomalous changes are used to compare performance to algorithms which effectively assume a Gaussian distribution.
引用
收藏
页码:3732 / 3735
页数:4
相关论文
共 13 条
[1]  
Chang C.-C., LIBSVM: a Library for Support Vector Machines
[2]   Airborne hyperspectral detection of small changes [J].
Eismann, Michael T. ;
Meola, Joseph ;
Stocker, Alan D. ;
Beaven, Scott G. ;
Schaum, Alan P. .
APPLIED OPTICS, 2008, 47 (28) :F27-F45
[3]   Hyperspectral change detection in the presence of diurnal and seasonal variations [J].
Eismann, Michael T. ;
Meola, Joseph ;
Hardie, Russell C. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (01) :237-249
[4]   Hyperspectral change detection and supervised matched filtering based on Covariance Equalization [J].
Schaum, A ;
Stocker, A .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 :77-90
[5]  
Schaum A., 1997, PROC INT S SPECTRAL
[6]  
Scholkopf B, 2002, Encyclopedia of Biostatistics
[7]  
Steinwart I., 2009, J MACH LEARN RES
[8]  
Steinwart I., 2005, J MACHINE LEARNING R, V6, P211232
[9]  
Steinwart Ingo., 2008, SUPPORT VECTOR MACHI
[10]   Resampling approach for anomaly detection in multispectral images [J].
Theiler, J ;
Cai, DM .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 :230-240