Using stochastic analysis to capture unstable equilibrium in natural convection

被引:26
作者
Asokan, BV [1 ]
Zabaras, N [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Mat Proc Design & Control Lab, Ithaca, NY 14853 USA
基金
美国国家航空航天局;
关键词
stochastic finite element method; polynomial chaos; Askey-chaos; variational multiscale method; stabilized finite elements; stochastic Galerkin method; importance sampling; natural convection;
D O I
10.1016/j.jcp.2005.02.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A stabilized stochastic finite element implementation for the natural convection system of equations under Boussinesq assumptions with uncertainty in inputs is considered. The stabilized formulations are derived using the variational multiscale framework assuming a one-step trapezoidal time integration rule. The stabilization parameters are shown to be functions of the time-step size. Provision is made for explicit tracking of the subgrid-scale solution through time. A support-space/stochastic Galerkin approach and the generalized polynomial chaos expansion (GPCE) approach are considered for input-output uncertainty representation. Stochastic versions of standard Rayleigh-Benard convection problems are used to evaluate the approach. It is shown that for simulations around critical points, the GPCE approach fails to capture the highly non-linear input uncertainty propagation whereas the support-space approach gives fairly accurate results. A summary of the results and findings is provided. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 153
页数:20
相关论文
共 21 条
[1]  
ASOKAN BV, 2005, J COMPUT PHYS, V202, P94
[2]   THE ORTHOGONAL DEVELOPMENT OF NON-LINEAR FUNCTIONALS IN SERIES OF FOURIER-HERMITE FUNCTIONALS [J].
CAMERON, RH ;
MARTIN, WT .
ANNALS OF MATHEMATICS, 1947, 48 (02) :385-392
[3]  
Chandrasekhar S., 1961, HYDRODYNAMIC HYDROMA
[4]  
Codina R., 2002, Computing and Visualization in Science, V4, P167, DOI 10.1007/s007910100068
[5]   Stabilized finite element approximation of transient incompressible flows using orthogonal subscales [J].
Codina, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (39-40) :4295-4321
[6]   Solution of stochastic partial differential equations using Galerkin finite element techniques [J].
Deb, MK ;
Babuska, IM ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (48) :6359-6372
[7]  
Ghanem R, 1991, STOCHASTIC FINITE EL, DOI DOI 10.1007/978-1-4612-3094-6_4
[8]  
GUERMOND JL, 1999, M2AN, V33, P1293
[9]   Unsteady fluid flow and temperature fields in a horizontal enclosure with an adiabatic body [J].
Ha, MY ;
Kim, IK ;
Yoon, HS ;
Lee, S .
PHYSICS OF FLUIDS, 2002, 14 (09) :3189-3202
[10]  
Hughes T. J. R., 2000, Computing and Visualization in Science, V3, P47, DOI 10.1007/s007910050051