Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations

被引:131
作者
Mellet, A. [1 ]
Vasseur, A. [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Vlasov equations; compressible Navier-Stokes equations; fluid-particles models; existence analysis;
D O I
10.1142/S0218202507002194
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of a weak solutions for a coupled system of kinetic and fluid equations. More precisely, we consider a Vlasov-Fokker-Planck equation coupled to compressible Navier-Stokes equation via a drag force. The fluid is assumed to be barotropic with gamma-pressure law (gamma > 3/2). The existence of weak solutions is proved in a bounded domain of R-3 with homogeneous Dirichlet conditions on the fluid velocity field and Dirichlet or reflection boundary conditions on the kinetic distribution function.
引用
收藏
页码:1039 / 1063
页数:25
相关论文
共 26 条
[1]  
BARANGER C, 2006, IN PRESS J DIFF HYPE
[2]   Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression [J].
Berres, S ;
Bürger, R ;
Karlsen, KH ;
Tory, EM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :41-80
[3]   From kinetic equations to multidimensional isentropic gas dynamics before shocks [J].
Berthelin, F ;
Vasseur, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) :1807-1835
[4]   Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system [J].
Bonilla, LL ;
Carrillo, JA ;
Soler, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (05) :1343-1372
[5]   EXISTENCE AND UNIQUENESS OF A GLOBAL SMOOTH SOLUTION FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM IN 3 DIMENSIONS [J].
BOUCHUT, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (01) :239-258
[6]  
Carrillo JA, 1998, MATH METHOD APPL SCI, V21, P907, DOI 10.1002/(SICI)1099-1476(19980710)21:10<907::AID-MMA977>3.3.CO
[7]  
2-N
[8]   Stability and asymptotic analysis of a fluid-particle interaction model [J].
Carrillo, Jose A. ;
Goudon, Thierry .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (09) :1349-1379
[9]  
Cercignani C., 1994, MATH THEORY DILUTE G, V106
[10]  
DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353