Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting

被引:159
|
作者
Shen, Jiali [1 ,2 ]
Li, Zhaoling [1 ,2 ]
Yu, Jianyong [2 ]
Ding, Bin [1 ,2 ]
机构
[1] Donghua Univ, Coll Text, Minist Educ, Key Lab Text Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Innovat Ctr Text Sci & Technol, Shanghai 200051, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Electrospinning; Humidity-resisting; Biomechanical energy harvesting; Wearable; NANOFIBROUS MEMBRANE; VIBRATION ENERGY; SURFACE FUNCTIONALIZATION; CONTACT ELECTRIFICATION; GENERATING ELECTRICITY; WASTE-WATER; ELECTRONICS; WALKING; SYSTEM; OUTPUT;
D O I
10.1016/j.nanoen.2017.08.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the rapid advancement of modern technology, wearable electronic devices become more and more indispensable to daily life. However, powering them in a stable and sustainable manner remains a challenge and highly desired. In this work, we proposed a humidity-resisting triboelectric nanogenerator (HR-TENG) to harvest energy from human biomechanical movements for wearable electronics. The electrospun nanofibrous membranes were rationally tailored to eliminate the adverse effects of water vapor on the electrical output and construct a high-performance humidity-resisting triboelectric nanogenerator. It could work with improved adaptability to the environmental humidity caused by human perspiration during sport. With human biomechanical motions, such as hand tapping, the wearable HR-TENG can respectively deliver a current and voltage output up to 28 mu A and 345 V, corresponding to a power density of 1.3 W/m(2) under a relative humidity 55%. It was also demonstrated to sustainably power an electronic watch, a commercial calculator, a thermal meter and light up about 400 LEDs by harvesting the biomechanical energy from human movements under different ambient humidity. And its electrical output was still at a relatively high level when the relative humidity was increased from 30% to 90%. Given a collection of compelling features of being wearable, flexible and cost-effective, the HR-TENG could be utilized as a sustainable power source to drive wearable electronics during human sport even with heavy perspiration.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 50 条
  • [41] A Flexible Triboelectric Nanogenerator Based on TiO2 Nanoarrays and Polyoxometalate for Harvesting Biomechanical Energy
    Zhang, Jing
    Ma, Chunhui
    Hao, Yijia
    Chen, Weilin
    ACS APPLIED NANO MATERIALS, 2024, 7 (14) : 16922 - 16931
  • [42] Exo-shoe triboelectric nanogenerator: Toward high-performance wearable biomechanical energy harvester
    Yun, Yeongcheol
    Jang, Sunmin
    Cho, Sumin
    Lee, Sae Hyuk
    Hwang, Hee Jae
    Choi, Dongwhi
    NANO ENERGY, 2021, 80
  • [43] Structural of BCTZ nanowires and high performance BCTZ-based nanogenerator for biomechanical energy harvesting
    Fan, H. H.
    Jin, C. C.
    Wang, Y.
    Hwang, H. L.
    Zhang, Y. F.
    CERAMICS INTERNATIONAL, 2017, 43 (08) : 5875 - 5880
  • [44] Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system
    Niu, Simiao
    Zhou, Yu Sheng
    Wang, Sihong
    Liu, Ying
    Lin, Long
    Bando, Yoshio
    Wang, Zhong Lin
    NANO ENERGY, 2014, 8 : 150 - 156
  • [45] Enhanced performance of an expanded polytetrafluoroethylene-based triboelectric nanogenerator for energy harvesting
    Zhang, Zhi
    Xu, Yiyang
    Wang, Dongfang
    Yang, Huaguang
    Guo, Jiansheng
    Turng, Lih-Sheng
    NANO ENERGY, 2019, 60 : 903 - 911
  • [46] Robust Multilayered Encapsulation for High-Performance Triboelectric Nanogenerator in Harsh Environment
    Zheng, Qiang
    Jin, Yiming
    Liu, Zhuo
    Ouyang, Han
    Li, Hu
    Shi, Bojing
    Jiang, Wen
    Zhang, Hao
    Li, Zhou
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (40) : 26697 - 26703
  • [47] A High-Performance Coniform Helmholtz Resonator-Based Triboelectric Nanogenerator for Acoustic Energy Harvesting
    Yuan, Haichao
    Yu, Hongyong
    Liu, Xiangyu
    Zhao, Hongfa
    Zhang, Yiping
    Xi, Ziyue
    Zhang, Qiqi
    Liu, Ling
    Lin, Yejin
    Pan, Xinxiang
    Xu, Minyi
    NANOMATERIALS, 2021, 11 (12)
  • [48] Hybridized energy harvesting device based on high-performance triboelectric nanogenerator for smart agriculture applications
    Wang, Zhixin
    Liu, Xu
    Yue, Mengyue
    Yao, Hongbo
    Tian, Haotian
    Sun, Xinru
    Wu, Yonghui
    Huang, Zongyin
    Ban, Dayan
    Zheng, Haiwu
    NANO ENERGY, 2022, 102
  • [49] Triboelectric nanogenerator based on direct image lithography and surface fluorination for biomechanical energy harvesting and self-powered sterilization
    Feng, Hanfang
    Li, Huayang
    Xu, Jin
    Yin, Yiming
    Cao, Jinwei
    Yu, Ruoxin
    Wang, Bingxue
    Li, Runwei
    Zhu, Guang
    NANO ENERGY, 2022, 98
  • [50] Harvesting Energy Using Triboelectric Nanogenerator Mounted inside Rolling Tire
    Tani, Hiroshi
    Sugimoto, Mutsuki
    Fushihara, Kazuhisa
    Nakano, Yukio
    Lu, Renguo
    Koganezawa, Shinji
    Tagawa, Norio
    SENSORS AND MATERIALS, 2020, 32 (07) : 2539 - 2549