Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting

被引:159
|
作者
Shen, Jiali [1 ,2 ]
Li, Zhaoling [1 ,2 ]
Yu, Jianyong [2 ]
Ding, Bin [1 ,2 ]
机构
[1] Donghua Univ, Coll Text, Minist Educ, Key Lab Text Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Innovat Ctr Text Sci & Technol, Shanghai 200051, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Electrospinning; Humidity-resisting; Biomechanical energy harvesting; Wearable; NANOFIBROUS MEMBRANE; VIBRATION ENERGY; SURFACE FUNCTIONALIZATION; CONTACT ELECTRIFICATION; GENERATING ELECTRICITY; WASTE-WATER; ELECTRONICS; WALKING; SYSTEM; OUTPUT;
D O I
10.1016/j.nanoen.2017.08.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the rapid advancement of modern technology, wearable electronic devices become more and more indispensable to daily life. However, powering them in a stable and sustainable manner remains a challenge and highly desired. In this work, we proposed a humidity-resisting triboelectric nanogenerator (HR-TENG) to harvest energy from human biomechanical movements for wearable electronics. The electrospun nanofibrous membranes were rationally tailored to eliminate the adverse effects of water vapor on the electrical output and construct a high-performance humidity-resisting triboelectric nanogenerator. It could work with improved adaptability to the environmental humidity caused by human perspiration during sport. With human biomechanical motions, such as hand tapping, the wearable HR-TENG can respectively deliver a current and voltage output up to 28 mu A and 345 V, corresponding to a power density of 1.3 W/m(2) under a relative humidity 55%. It was also demonstrated to sustainably power an electronic watch, a commercial calculator, a thermal meter and light up about 400 LEDs by harvesting the biomechanical energy from human movements under different ambient humidity. And its electrical output was still at a relatively high level when the relative humidity was increased from 30% to 90%. Given a collection of compelling features of being wearable, flexible and cost-effective, the HR-TENG could be utilized as a sustainable power source to drive wearable electronics during human sport even with heavy perspiration.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 50 条
  • [21] A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting
    Yan, Cheng
    Gao, Yuyu
    Zhao, Shenlong
    Zhang, Songlin
    Zhou, Yihao
    Deng, Weili
    Li, Ziwei
    Jiang, Gang
    Jin, Long
    Tian, Guo
    Yang, Tao
    Chu, Xiang
    Xiong, Da
    Wang, Zixing
    Li, Yongzhong
    Yang, Weiqing
    Chen, Jun
    NANO ENERGY, 2020, 67
  • [22] High-performance triboelectric nanogenerator inspired by bionic jellyfish for wave energy harvesting
    Yang, Borui
    Li, Hengyu
    Wang, Zheng
    Wang, Jianlong
    Dong, Lu
    Yu, Yang
    Zhu, Jinzhi
    Zhu, Jianyang
    Cheng, Tinghai
    Cheng, Xiaojun
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [23] Triboelectric nanogenerator based wearable energy harvesting devices
    Ding Ya-Fei
    Chen Xiang-Yu
    ACTA PHYSICA SINICA, 2020, 69 (17)
  • [24] Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator
    Yang, Jin
    Chen, Jun
    Yang, Ya
    Zhang, Hulin
    Yang, Weiqing
    Bai, Peng
    Su, Yuanjie
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2014, 4 (06)
  • [25] A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring
    Wu, Yuxiang
    Li, Yusheng
    Zou, Yang
    Rao, Wei
    Gai, Yansong
    Xue, Jiangtao
    Wu, Li
    Qu, Xuecheng
    Liu, Ying
    Xu, Guodong
    Xu, Lingling
    Liu, Zhuo
    Li, Zhou
    NANO ENERGY, 2022, 92
  • [26] Electrode-Free Triboelectric Nanogenerator for Harvesting Human Biomechanical Energy and as a Versatile Inartificial Physiological Monitor
    Cui, Xiaojing
    Cao, Shengli
    Yuan, Zhongyun
    Xie, Gang
    Ding, Jie
    Sang, Shengbo
    Zhang, Hulin
    ENERGY TECHNOLOGY, 2019, 7 (05)
  • [27] Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion
    Hong Chen
    Qixin Lu
    Xia Cao
    Ning Wang
    Zhong Lin Wang
    Nano Research, 2022, 15 : 2505 - 2511
  • [28] Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion
    Chen, Hong
    Lu, Qixin
    Cao, Xia
    Wang, Ning
    Wang, Zhonglin
    NANO RESEARCH, 2022, 15 (03) : 2505 - 2511
  • [29] High-Efficiency Biomechanical Energy Harvesting Device With Enhanced Triboelectric Nanogenerator Performance Based on MXene Nanosheets Interfacial Polarization Strategy
    Gong, Chenbo
    Xia, Zhongmei
    Han, Runyi
    Qi, Zichen
    Feng, Jingrui
    He, Zixu
    Liu, He
    Gao, Jing
    Wei, Yong
    Xu, Zhaopeng
    IEEE SENSORS JOURNAL, 2025, 25 (02) : 2851 - 2860
  • [30] Dual-effect doped triboelectric nanogenerator and its stable energy harvesting and sensing in high humidity environment
    Song, Hao
    Su, Juan
    Gao, Xiaobo
    Gao, Wei
    Sun, Wuliang
    Kang, Ruohui
    MATERIALS TODAY COMMUNICATIONS, 2025, 42