Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting

被引:159
|
作者
Shen, Jiali [1 ,2 ]
Li, Zhaoling [1 ,2 ]
Yu, Jianyong [2 ]
Ding, Bin [1 ,2 ]
机构
[1] Donghua Univ, Coll Text, Minist Educ, Key Lab Text Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Innovat Ctr Text Sci & Technol, Shanghai 200051, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Electrospinning; Humidity-resisting; Biomechanical energy harvesting; Wearable; NANOFIBROUS MEMBRANE; VIBRATION ENERGY; SURFACE FUNCTIONALIZATION; CONTACT ELECTRIFICATION; GENERATING ELECTRICITY; WASTE-WATER; ELECTRONICS; WALKING; SYSTEM; OUTPUT;
D O I
10.1016/j.nanoen.2017.08.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the rapid advancement of modern technology, wearable electronic devices become more and more indispensable to daily life. However, powering them in a stable and sustainable manner remains a challenge and highly desired. In this work, we proposed a humidity-resisting triboelectric nanogenerator (HR-TENG) to harvest energy from human biomechanical movements for wearable electronics. The electrospun nanofibrous membranes were rationally tailored to eliminate the adverse effects of water vapor on the electrical output and construct a high-performance humidity-resisting triboelectric nanogenerator. It could work with improved adaptability to the environmental humidity caused by human perspiration during sport. With human biomechanical motions, such as hand tapping, the wearable HR-TENG can respectively deliver a current and voltage output up to 28 mu A and 345 V, corresponding to a power density of 1.3 W/m(2) under a relative humidity 55%. It was also demonstrated to sustainably power an electronic watch, a commercial calculator, a thermal meter and light up about 400 LEDs by harvesting the biomechanical energy from human movements under different ambient humidity. And its electrical output was still at a relatively high level when the relative humidity was increased from 30% to 90%. Given a collection of compelling features of being wearable, flexible and cost-effective, the HR-TENG could be utilized as a sustainable power source to drive wearable electronics during human sport even with heavy perspiration.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 50 条
  • [11] A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing
    Wang, Yan
    Yang, En
    Chen, Tianyu
    Wang, Jianye
    Hu, Zhiyuan
    Mi, Jianchun
    Pan, Xinxiang
    Xu, Minyi
    NANO ENERGY, 2020, 78
  • [12] Nestable arched triboelectric nanogenerator for large deflection biomechanical sensing and energy harvesting
    Liao, Jingwen
    Zou, Yang
    Jiang, Dongjie
    Liu, Zezhi
    Qu, Xuecheng
    Li, Zhe
    Liu, Ruping
    Fan, Yubo
    Shi, Bojing
    Li, Zhou
    Zheng, Li
    NANO ENERGY, 2020, 69
  • [13] An airtight-cavity-structural triboelectric nanogenerator-based insole for high performance biomechanical energy harvesting
    Lin, Zhiming
    Wu, Yufen
    He, Qiang
    Sun, ChenChen
    Fan, Endong
    Zhou, Zhihao
    Liu, Mingyang
    Wei, Wei
    Yang, Jin
    NANOSCALE, 2019, 11 (14) : 6802 - 6809
  • [14] Synergistic energy harvesting and humidity sensing with single electrode triboelectric nanogenerator
    Behera, Swayam Aryam
    Hajra, Sugato
    Panda, Swati
    Sahu, Alok Kumar
    Alagarsamy, Perumal
    Mishra, Yogendra Kumar
    Kim, Hoe Joon
    Achary, P. Ganga Raju
    CERAMICS INTERNATIONAL, 2024, 50 (19) : 37193 - 37200
  • [15] Universal biomechanical energy harvesting from joint movements using a direction-switchable triboelectric nanogenerator
    Cho, Sumin
    Yun, Yeongcheol
    Jang, Sunmin
    Ra, Yoonsang
    Choi, Jun Hyuk
    Hwang, Hee Jae
    Choi, Dukhyun
    Choi, Dongwhi
    NANO ENERGY, 2020, 71
  • [16] Wearable Triboelectric Nanogenerator with Ground-Coupled Electrode for Biomechanical Energy Harvesting and Sensing
    Su, Kangyu
    Lin, Xiaobo
    Liu, Zhangwei
    Tian, Yun
    Peng, Zhengchun
    Meng, Bo
    BIOSENSORS-BASEL, 2023, 13 (05):
  • [17] A humidity- and environment-resisted high-performance triboelectric nanogenerator with superhydrophobic interface for energy harvesting and sensing
    Zhang, Zhao
    Zhang, Qilong
    Xia, Zhaoyue
    Wang, Jing
    Yao, Heng
    Shen, Qianhong
    Yang, Hui
    NANO ENERGY, 2023, 109
  • [18] Design and output performance of vibration energy harvesting triboelectric nanogenerator
    Wu Ye-Sheng
    Liu Qi
    Cao Jie
    Li Kai
    Cheng Guang-Gui
    Zhang Zhong-Qiang
    Ding Jian-Ning
    Jiang Shi-Yu
    ACTA PHYSICA SINICA, 2019, 68 (19)
  • [19] Experimental study of high performance mercury-based triboelectric nanogenerator for low-frequency wave energy harvesting
    Dai, Shaoshi
    Chai, Yuanchao
    Liu, Hengxu
    Yu, Dan
    Wang, Keyi
    Kong, Fankai
    Chen, Hailong
    NANO ENERGY, 2023, 115
  • [20] High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting
    Shi, Lin
    Jin, Hao
    Dong, Shurong
    Huang, Shuyi
    Kuang, Haoze
    Xu, Hongsheng
    Chen, Jinkai
    Xuan, Weipeng
    Zhang, Shaomin
    Li, Shijian
    Wang, Xiaozhi
    Luo, Jikui
    NANO ENERGY, 2021, 80