On exact analytical solutions of equations of Maxwell incompressible viscoelastic medium

被引:7
作者
Meleshko, S. V. [1 ]
Moshkin, N. P. [2 ,3 ]
Pukhnachev, V. V. [2 ,3 ]
机构
[1] Suranaree Univ Technol, Inst Sci, Sch Math, Nakhon Ratchasima 30000, Thailand
[2] RAS, Siberian Branch, Lavrentyev Inst Hydrodynam, 15 Ac Lavrentieva Ave, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ, 2 Pirogova Str, Novosibirsk 630090 90, Russia
关键词
Viscoelastic fluid; Johnson-Segalman convected derivative; UCM; Lie group; Invariant solution; Lagrangian coordinates; Stagnation point flow; FLUID; MODEL; FLOW;
D O I
10.1016/j.ijnonlinmec.2018.06.002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Unsteady two-dimensional flows of incompressible viscoelastic Maxwell medium with upper, low and corotational convective derivatives in the rheological constitutive law are considered. A class of partially invariant solutions is analyzed. Using transition to Lagrangian coordinates, an exact solution of the problem of unsteady flow near free-stagnation point was constructed. For the model with Johnson-Segalman convected derivative and special linear dependence of the vertical component of velocity, the general solutions were derived.
引用
收藏
页码:152 / 157
页数:6
相关论文
共 22 条
[1]  
ASTARITA G, 1974, PRINICPLES NONNEWTON
[2]   Group analysis of equations of motion of aqueous solutions of polymers [J].
Bozhkov, Yu D. ;
Pukhnachev, V. V. .
DOKLADY PHYSICS, 2015, 60 (02) :77-80
[3]  
Brutyan M. A., 1991, COMPLEX SPECIAL DIVI, V4, P3
[4]   Analytical solution of steady 2D wall-free extensional flows of UCM fluids [J].
Cruz, D. O. A. ;
Pinho, F. T. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2015, 223 :157-164
[5]   STAGNATION POINT FLOW OF A NON-NEWTONIAN FLUID [J].
GARG, VK ;
RAJAGOPAL, KR .
MECHANICS RESEARCH COMMUNICATIONS, 1990, 17 (06) :415-421
[6]   On the characteristics and compatibility equations for the UCM model fluid [J].
Gerritsma, M. I. ;
Phillips, T. N. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2008, 88 (07) :523-539
[7]  
Godunov S.K., 2003, Elements of Continuum Mechanics and Conservation Laws
[8]  
GUILLOPE C, 1990, RAIRO-MATH MODEL NUM, V24, P369
[9]  
Hiemenz K., 1911, DINGLERS POLYTECHNIS, V326, P321
[10]   MODEL FOR VISCOELASTIC FLUID BEHAVIOR WHICH ALLOWS NON-AFFINE DEFORMATION [J].
JOHNSON, MW ;
SEGALMAN, D .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1977, 2 (03) :255-270