Circulating cell-free DNA-based methylation patterns for breast cancer diagnosis

被引:24
作者
Zhang, Xianyu [1 ]
Zhao, Dezhi [1 ]
Yin, Yanling [2 ]
Yang, Ting [1 ]
You, Zilong [1 ]
Li, Dalin [1 ]
Chen, Yanbo [1 ]
Jiang, Yongdong [1 ]
Xu, Shouping [1 ]
Geng, Jingshu [3 ]
Zhao, Yashuang [4 ]
Wang, Jun [2 ]
Li, Hui [2 ]
Tao, Jinsheng [2 ]
Lei, Shan [2 ]
Jiang, Zeyu [2 ]
Chen, Zhiwei [2 ,5 ]
Yu, Shihui [6 ]
Fan, Jian-Bing [2 ,7 ]
Pang, Da [1 ]
机构
[1] Harbin Med Univ Canc Hosp, Dept Breast Surg, Harbin, Peoples R China
[2] AnchorDx Med Co Ltd, Dept Res & Dev, Guangzhou, Peoples R China
[3] Harbin Med Univ Canc Hosp, Dept Pathol, Harbin, Peoples R China
[4] Harbin Med Univ, Dept Epidemiol, Harbin, Peoples R China
[5] AnchorDx Inc, Fremont, CA USA
[6] Guangzhou Kingmed Ctr Clin Lab Co Ltd, Guangzhou, Peoples R China
[7] Southern Med Univ, Sch Basic Med Sci, Dept Pathol, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
MAMMOGRAPHY; PROGNOSIS; MARKERS; GENE;
D O I
10.1038/s41523-021-00316-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Mammography is used to detect breast cancer (BC), but its sensitivity is limited, especially for dense breasts. Circulating cell-free DNA (cfDNA) methylation tests is expected to compensate for the deficiency of mammography. We derived a specific panel of markers based on computational analysis of the DNA methylation profiles from The Cancer Genome Atlas (TCGA). Through training (n = 160) and validation set (n = 69), we developed a diagnostic prediction model with 26 markers, which yielded a sensitivity of 89.37% and a specificity of 100% for differentiating malignant disease from normal lesions [AUROC = 0.9816 (95% CI: 96.09-100%), and AUPRC = 0.9704 (95% CI: 94.54-99.46%)]. A simplified 4-marker model including cg23035715, cg16304215, cg20072171, and cg21501525 had a similar diagnostic power [AUROC = 0.9796 (95% CI: 95.56-100%), and AUPRC = 0.9220 (95% CI: 91.02-94.37%)]. We found that a single cfDNA methylation marker, cg23035715, has a high diagnostic power [AUROC = 0.9395 (95% CI: 89.72-99.27%), and AUPRC = 0.9111 (95% CI: 88.45-93.76%)], with a sensitivity of 84.90% and a specificity of 93.88%. In an independent testing dataset (n = 104), the obtained diagnostic prediction model discriminated BC patients from normal controls with high accuracy [AUROC = 0.9449 (95% CI: 90.07-98.91%), and AUPRC = 0.8640 (95% CI: 82.82-89.98%)]. We compared the diagnostic power of cfDNA methylation and mammography. Our model yielded a sensitivity of 94.79% (95% CI: 78.72-97.87%) and a specificity of 98.70% (95% CI: 86.36-100%) for differentiating malignant disease from normal lesions [AUROC = 0.9815 (95% CI: 96.75-99.55%), and AUPRC = 0.9800 (95% CI: 96.6-99.4%)], with better diagnostic power and had better diagnostic power than that of using mammography [AUROC = 0.9315 (95% CI: 89.95-96.34%), and AUPRC = 0.9490 (95% CI: 91.7-98.1%)]. In addition, hypermethylation profiling provided insights into lymph node metastasis stratifications (p < 0.05). In conclusion, we developed and tested a cfDNA methylation model for BC diagnosis with better performance than mammography.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] Liquid biopsy in breast cancer: A comprehensive review
    Alimirzaie, Sahar
    Bagherzadeh, Maryam
    Akbari, Mohammad R.
    [J]. CLINICAL GENETICS, 2019, 95 (06) : 643 - 660
  • [2] Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies
    Bettegowda, Chetan
    Sausen, Mark
    Leary, Rebecca J.
    Kinde, Isaac
    Wang, Yuxuan
    Agrawal, Nishant
    Bartlett, Bjarne R.
    Wang, Hao
    Luber, Brandon
    Alani, Rhoda M.
    Antonarakis, Emmanuel S.
    Azad, Nilofer S.
    Bardelli, Alberto
    Brem, Henry
    Cameron, John L.
    Lee, Clarence C.
    Fecher, Leslie A.
    Gallia, Gary L.
    Gibbs, Peter
    Le, Dung
    Giuntoli, Robert L.
    Goggins, Michael
    Hogarty, Michael D.
    Holdhoff, Matthias
    Hong, Seung-Mo
    Jiao, Yuchen
    Juhl, Hartmut H.
    Kim, Jenny J.
    Siravegna, Giulia
    Laheru, Daniel A.
    Lauricella, Calogero
    Lim, Michael
    Lipson, Evan J.
    Marie, Suely Kazue Nagahashi
    Netto, George J.
    Oliner, Kelly S.
    Olivi, Alessandro
    Olsson, Louise
    Riggins, Gregory J.
    Sartore-Bianchi, Andrea
    Schmidt, Kerstin
    Shih, Ie-Ming
    Oba-Shinjo, Sueli Mieko
    Siena, Salvatore
    Theodorescu, Dan
    Tie, Jeanne
    Harkins, Timothy T.
    Veronese, Silvio
    Wang, Tian-Li
    Weingart, Jon D.
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2014, 6 (224)
  • [3] Circulating tumor DNA analysis in breast cancer: Is it ready for prime-time?
    Buono, Giuseppe
    Gerratana, Lorenzo
    Bulfoni, Michela
    Provinciali, Nicoletta
    Basile, Debora
    Giuliano, Mario
    Corvaja, Carla
    Arpino, Grazia
    Del Mastro, Lucia
    De Placido, Sabino
    De Laurentiis, Michele
    Cristofanilli, Massimo
    Puglisi, Fabio
    [J]. CANCER TREATMENT REVIEWS, 2019, 73 : 73 - 83
  • [4] Accessing Genetic Information with Liquid Biopsies
    Cai, Xuyu
    Janku, Filip
    Zhan, Qimin
    Fan, Jian-Bing
    [J]. TRENDS IN GENETICS, 2015, 31 (10) : 564 - 575
  • [5] Activation of Toll-like Receptor 5 on Breast Cancer Cells by Flagellin Suppresses Cell Proliferation and Tumor Growth
    Cai, Zhenyu
    Sanchez, Amir
    Shi, Zhongcheng
    Zhang, Tingting
    Liu, Mingyao
    Zhang, Dekai
    [J]. CANCER RESEARCH, 2011, 71 (07) : 2466 - 2475
  • [6] Breast Cancer DNA Methylation Profiles Are Associated with Tumor Size and Alcohol and Folate Intake
    Christensen, Brock C.
    Kelsey, Karl T.
    Zheng, Shichun
    Houseman, E. Andres
    Marsit, Carmen J.
    Wrensch, Margaret R.
    Wiemels, Joseph L.
    Nelson, Heather H.
    Karagas, Margaret R.
    Kushi, Lawrence H.
    Kwan, Marilyn L.
    Wiencke, John K.
    [J]. PLOS GENETICS, 2010, 6 (07): : 1 - 10
  • [7] Distribution of mammographic density and its influential factors among Chinese women
    Dai, Hongji
    Yan, Ye
    Wang, Peishan
    Liu, Peifang
    Cao, Yali
    Xiong, Li
    Luo, Yahong
    Pan, Tie
    Ma, Xiangjun
    Wang, Jie
    Yang, Zhenhua
    Liu, Xueou
    Chen, Chuan
    Huang, Yubei
    Li, Yi
    Wang, Yaogang
    Hao, Xishan
    Ye, Zhaoxiang
    Chen, Kexin
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2014, 43 (04) : 1240 - 1251
  • [8] The benefits and harms of mammographic screening for breast cancer: building the evidence base using service screening programmes
    Hackshaw, Allan
    [J]. JOURNAL OF MEDICAL SCREENING, 2012, 19 : 1 - 2
  • [9] DNA methylation markers for diagnosis and prognosis of common cancers
    Hao, Xiaoke
    Luo, Huiyan
    Krawczyk, Michal
    Wei, Wei
    Wang, Wenqiu
    Wang, Juan
    Flagg, Ken
    Hou, Jiayi
    Zhang, Heng
    Yi, Shaohua
    Jafari, Maryam
    Lin, Danni
    Chung, Christopher
    Caughey, Bennett A.
    Li, Gen
    Dhar, Debanjan
    Shi, William
    Zheng, Lianghong
    Hou, Rui
    Zhu, Jie
    Zhao, Liang
    Fu, Xin
    Zhang, Edward
    Zhang, Charlotte
    Zhu, Jian-Kang
    Karin, Michael
    Xu, Rui-Hua
    Zhang, Kang
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (28) : 7414 - 7419
  • [10] The past, present and future of breast cancer research in China
    Hong, Wei
    Dong, Erdan
    [J]. CANCER LETTERS, 2014, 351 (01) : 1 - 5