Stand-Alone CdS Nanocrystals for Photocatalytic CO2 Reduction with High Efficiency and Selectivity

被引:47
作者
Feng, You-Xiang [1 ]
Wang, Hong-Juan [1 ]
Wang, Jia-Wei [1 ]
Zhang, Wen [1 ]
Zhang, Min [1 ,2 ]
Lu, Tong-Bu [1 ]
机构
[1] Tianjin Univ Technol, Sch Mat Sci & Engn, Inst New Energy Mat & Low Carbon Technol, MOE Int Joint Lab Mat Microstruct, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Sch Chem & Chem Engn, Tianjin Key Lab Organ Solar Cells & Photochem Con, Tianjin 300384, Peoples R China
基金
国家重点研发计划;
关键词
charge transfer; CdS nanocrystals; CO2; reduction; photocatalysis; pyridinium; QUANTUM DOTS; SURFACE LIGAND; CONFINEMENT; CHALLENGES; CONVERSION; PYRIDINE; CASCADE; FUTURE; WATER;
D O I
10.1021/acsami.1c03606
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of a cost-effective photocatalyst is highly anticipated to achieve efficient photocatalytic CO2 reduction with superior selectivity, which is still facing the lack of valid settlements. Herein, 4-mercaptopyridine (PD) as the building block of a capping ligand is tightly decorated on the surface of CdS nanocrystals (CdS-PD) using a facile ligand-exchange strategy, to exploit a cost-effective photocatalyst for photocatalytic CO(2 )reduction without any cocatalysts. The conjugated structure of PD can facilitate the delocalization of photogenerated electrons in CdS nanocrystals, bringing forth an improved charge separation efficiency. More importantly, N-protonated PD can enable the easy formation of a six-membered ring intermediate with CO2 assisted by water, which can serve as the efficient active site to achieve photocatalytic CO2 reduction. In the absence of a cocatalyst, stand-alone CdS-PD nanocrystals exhibit an excellent CO yield of 20.35 mmol g(-1) h(-1) concomitant with a high selectivity of 95.3% for the CO2-to-CO conversion under visible light, which are remarkably superior than those of CdS nanocrystals possessing traditional allcyl-chain and other conjugated capping ligands.
引用
收藏
页码:26573 / 26580
页数:8
相关论文
共 60 条
[1]   Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures [J].
Amirav, Lilac ;
Alivisatos, A. Paul .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (07) :1051-1054
[2]   The future of energy supply: Challenges and opportunities [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (1-2) :52-66
[3]   Selective Photocatalytic CO2 Reduction in Water by Electrostatic Assembly of CdS Nanocrystals with a Dinuclear Cobalt Catalyst [J].
Bi, Qian-Qian ;
Wang, Jia-Wei ;
Lv, Jia-Xin ;
Wang, Juan ;
Zhang, Wen ;
Lu, Tong-Bu .
ACS CATALYSIS, 2018, 8 (12) :11815-11821
[4]   Photochemical Reduction of Carbon Dioxide to Methanol and Formate in a Homogeneous System with Pyridinium Catalysts [J].
Boston, David J. ;
Xu, Chengdong ;
Armstrong, Daniel W. ;
MacDonnell, Frederick M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (44) :16252-16255
[5]   Characterization of Photochemical Processes for H2 Production by CdS Nanorod-[FeFe] Hydrogenase Complexes [J].
Brown, Katherine A. ;
Wilker, Molly B. ;
Boehm, Marko ;
Dukovic, Gordana ;
King, Paul W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (12) :5627-5636
[6]   Controlled Assembly of Hydrogenase-CdTe Nanocrystal Hybrids for Solar Hydrogen Production [J].
Brown, Katherine A. ;
Dayal, Smita ;
Ai, Xin ;
Rumbles, Garry ;
King, Paul W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (28) :9672-9680
[7]   Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water [J].
Chang, Christina M. ;
Orchard, Katherine L. ;
Martindale, Benjamin C. M. ;
Reisner, Erwin .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (08) :2856-2862
[8]   Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals [J].
Chaudhary, Yatendra S. ;
Woolerton, Thomas W. ;
Allen, Christopher S. ;
Warner, Jamie H. ;
Pierce, Elizabeth ;
Ragsdale, Stephen W. ;
Armstrong, Fraser A. .
CHEMICAL COMMUNICATIONS, 2012, 48 (01) :58-60
[9]   CdS-Based photocatalysts [J].
Cheng, Lei ;
Xiang, Quanjun ;
Liao, Yulong ;
Zhang, Huaiwu .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1362-1391
[10]   Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights [J].
Cole, Emily Barton ;
Lakkaraju, Prasad S. ;
Rampulla, David M. ;
Morris, Amanda J. ;
Abelev, Esta ;
Bocarsly, Andrew B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (33) :11539-11551