Structure and Function of a Bacterial Microcompartment Shell Protein Engineered to Bind a [4Fe-4S] Cluster

被引:53
|
作者
Aussignargues, Clement [1 ]
Pandelia, Maria-Eirini [3 ,9 ]
Sutter, Markus [1 ,4 ]
Plegaria, Jefferson S. [1 ]
Zarzycki, Jan [1 ]
Turmo, Aiko [1 ]
Huang, Jingcheng [1 ,2 ]
Ducat, Daniel C. [1 ,2 ]
Hegg, Eric L. [2 ]
Gibney, Brian R. [5 ,6 ]
Kerfeld, Cheryl A. [1 ,2 ,4 ,7 ,8 ]
机构
[1] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[3] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys Biochem, Berkeley, CA 94720 USA
[5] CUNY Brooklyn Coll, Dept Chem, Brooklyn, NY 11210 USA
[6] CUNY, Grad Ctr, PhD Programs Chem & Biochem, New York, NY 10016 USA
[7] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[8] Berkeley Synthet Biol Inst, Berkeley, CA 94720 USA
[9] Brandeis Univ, Dept Biochem, Waltham, MA 02453 USA
关键词
IRON-SULFUR CLUSTERS; DE-NOVO DESIGN; CRYSTAL-STRUCTURES; FERREDOXIN; CONSTRUCTION; IDENTIFICATION; RESOLUTION; ORGANELLE; PEPTIDE; PACKAGE;
D O I
10.1021/jacs.5b11734
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bacterial microcompartments (BMCs) are self-assembling organelles composed of a selectively permeable protein shell and encapsulated enzymes. They are considered promising templates for the engineering of designed bionanoreactors for biotechnology. In particular, encapsulation of oxidoreductive reactions requiring electron transfer between the lumen of the BMC and the cytosol relies on the ability to conduct electrons across the shell. We determined the crystal structure of a component protein of a synthetic BMC shell, which informed the rational design of a [4Fe-4S] cluster-binding site in its pore. We also solved the structure of the [4Fe-4S] cluster-bound, engineered protein to 1.8 A resolution, providing the first structure of a BMC shell protein containing a metal center. The [4Fe-45] cluster was characterized by optical and EPR spectroscopies; it has a reduction potential of -370 mV vs the standard hydrogen electrode (SHE) and is stable through redox cycling. This remarkable stability may be attributable to the hydrogen-bonding network provided by the main chain of the protein scaffold. The properties of the [4Fe-4S] cluster resemble those in low-potential bacterial ferredoxins, while its ligation to three cysteine residues is reminiscent of enzymes such as aconitase and radical S-adenosymethionine (SAM) enzymes. This engineered shell protein provides the foundation for conferring electron-transfer functionality to BMC shells.
引用
收藏
页码:5262 / 5270
页数:9
相关论文
共 50 条
  • [31] A [4Fe-4S] cluster resides at the active center of phosphomevalonate dehydratase, a key enzyme in the archaeal modified mevalonate pathway
    Komeyama, Mutsumi
    Kanno, Kohsuke
    Mino, Hiroyuki
    Yasuno, Yoko
    Shinada, Tetsuro
    Ito, Tomokazu
    Hemmi, Hisashi
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [32] A De Novo Designed 2[4Fe-4S] Ferredoxin Mimic Mediates Electron Transfer
    Roy, Anindya
    Sommer, Dayn Joseph
    Schmitz, Robert Arthur
    Brown, Chelsea Lynn
    Gust, Devens
    Astashkin, Andrei
    Ghirlanda, Giovanna
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (49) : 17343 - 17349
  • [33] The auxiliary [4Fe-4S] cluster of the Radical SAM heme synthase from Methanosarcina barkeri is involved in electron transfer
    Kuehner, Melanie
    Schweyen, Peter
    Hoffmann, Martin
    Ramos, Jose Vazquez
    Reijerse, Edward J.
    Lubitz, Wolfgang
    Broering, Martin
    Layer, Gunhild
    CHEMICAL SCIENCE, 2016, 7 (07) : 4633 - 4643
  • [34] The reducing component BoxA of benzoyl-coenzyme A epoxidase from Azoarcus evansii is a [4Fe-4S] protein
    Rather, Liv J.
    Bill, Eckhard
    Ismail, Wael
    Fuchs, Georg
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2011, 1814 (12): : 1609 - 1615
  • [35] Structural principles for computational and de novo design of 4Fe-4S metalloproteins
    Nanda, Vikas
    Senn, Stefan
    Pike, Douglas H.
    Rodriguez-Granillo, Agustina
    Hansen, Will A.
    Khare, Sagar D.
    Noy, Dror
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2016, 1857 (05): : 531 - 538
  • [36] A site-differentiated [4Fe-4S] cluster controls electron transfer reactivity of Clostridium acetobutylicum [FeFe]-hydrogenase I
    Lubner, Carolyn E.
    Artz, Jacob H.
    Mulder, David W.
    Oza, Aisha
    Ward, Rachel J.
    Williams, S. Garrett
    Jones, Anne K.
    Peters, John W.
    Smalyukh, Ivan I.
    Bharadwaj, Vivek S.
    King, Paul W.
    CHEMICAL SCIENCE, 2022, 13 (16) : 4581 - 4588
  • [37] Crystal structures of the all-cysteinyl-coordinated D14C variant of Pyrococcus furiosus ferredoxin: [4Fe-4S] a†" [3Fe-4S] cluster conversion
    Lovgreen, Monika Nohr
    Martic, Maja
    Windahl, Michael S.
    Christensen, Hans E. M.
    Harris, Pernille
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2011, 16 (05): : 763 - 775
  • [38] Purification and characterization of a [3Fe-4S] [4Fe-4S] type ferredoxin from hyperthermophilic archaeon, Pyrobaculum islandicum
    Nakajima, Y
    Fujiwara, T
    Fukumori, Y
    JOURNAL OF BIOCHEMISTRY, 1998, 123 (03) : 521 - 527
  • [39] Radical S-adenosylmethionine maquette chemistry: Cx3Cx2C peptide coordinated redox active [4Fe-4S] clusters
    Galambas, Amanda
    Miller, Jacquelyn
    Jones, Morgan
    McDaniel, Elizabeth
    Lukes, Molly
    Watts, Hope
    Copie, Valerie
    Broderick, Joan B.
    Szilagyi, Robert K.
    Shepard, Eric M.
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2019, 24 (06): : 793 - 807
  • [40] Expression, Purification and Molecular Modeling of Another HdrC from Acidithiobacillus ferrooxidans Which Binds Only One [4Fe-4S] Cluster
    Liu, Yuandong
    Ji, Jiaju
    Yu, Runlan
    Qiu, Guanzhou
    CURRENT MICROBIOLOGY, 2012, 65 (04) : 416 - 423