Conformable Integral Inequalities of the Hermite-Hadamard Type in terms of GG- and GA-Convexities

被引:54
作者
Khurshid, Yousaf [1 ]
Adil Khan, Muhammad [1 ]
Chu, Yu-Ming [2 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar 25000, Pakistan
[2] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
关键词
SCHUR HARMONIC CONVEXITY; CONCAVITY; BOUNDS;
D O I
10.1155/2019/6926107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we present several conformable fractional integrals' versions of the Hermite-Hadamard type inequalities for GG- and GA-convex functions and provide their applications in special bivariate means.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives [J].
Abdeljawad, Thabet ;
Agarwal, Ravi P. ;
Alzabut, Jehad ;
Jarad, Fahd ;
Ozbekler, Abdullah .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[2]   Fractional operators with exponential kernels and a Lyapunov type inequality [J].
Abdeljawad, Thabet .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[3]   A generalized Lyapunov-type inequality in the frame of conformable derivatives [J].
Abdeljawad, Thabet ;
Alzabut, Jehad ;
Jarad, Fahd .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[4]   A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel [J].
Abdeljawad, Thabet .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[5]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[6]  
Akdemir AO, 2017, J NONLINEAR CONVEX A, V18, P661
[7]  
Aminikhah H., 2016, SCI IRAN TRANS B, V23, P1048, DOI [10.24200/sci.2016.3873, DOI 10.24200/sci.2016.3873]
[8]  
Anderson D.R., 2016, Contrib. Math. Eng. Springer. Cham, P25
[9]  
[Anonymous], 2017, COMPLEXITY
[10]   The Schur multiplicative and harmonic convexities of the complete symmetric function [J].
Chu, Y. -M. ;
Wang, G. -D. ;
Zhang, X. -H. .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) :653-663