The Ultra Weak Variational Formulation Using Bessel Basis Functions

被引:17
作者
Luostari, Teemu [1 ]
Huttunen, Tomi [1 ]
Monk, Peter [2 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, FI-70211 Kuopio, Finland
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
The ultra weak variational formulation; Helmholtz problem; planewave basis; Bessel basis; non-polynomial basis; DISCONTINUOUS GALERKIN METHODS; LEAST-SQUARES METHOD; PLANE-WAVES; EQUATIONS; MODEL;
D O I
10.4208/cicp.121209.040111s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the ultra weak variational formulation (UWVF) of the 2-D Helmholtz equation using a new choice of basis functions. Traditionally the UWVF basis functions are chosen to be plane waves. Here, we instead use first kind Bessel functions. We compare the performance of the two bases. Moreover, we show that it is possible to use coupled plane wave and Bessel bases in the same mesh. As test cases we shall consider propagating plane and evanescent waves in a rectangular domain and a singular 2-D Helmholtz problem in an L-shaped domain.
引用
收藏
页码:400 / 414
页数:15
相关论文
共 50 条
[41]   Reconstructing Mercury's magnetic field in magnetosphere using radial basis functions [J].
Wang, Jian-zhao ;
Huo, Zhuo-xi ;
Zhang, Lei .
PLANETARY AND SPACE SCIENCE, 2022, 210
[42]   Surrogate based optimization of functionally graded plates using radial basis functions [J].
Ribeiro, Leonardo Goncalves ;
Maia, Marina Alves ;
Parente Jr, Evandro ;
Cartaxo de Melo, Antonio Macario .
COMPOSITE STRUCTURES, 2020, 252
[43]   Reconstruction of Gated Dynamic Cardiac SPECT Data Using Spatiotemporal Basis Functions [J].
Shrestha, Uttam ;
Alhassen, Fares ;
Seo, Youngho ;
Botvinick, Elias H. ;
Gullberg, Grant T. .
2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, :2489-2492
[44]   A weighted meshfree collocation method for incompressible flows using radial basis functions [J].
Wang, Lihua ;
Qian, Zhihao ;
Zhou, Yueting ;
Peng, Yongbo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 401
[45]   An intergrid transfer operator using radial basis functions with application to cardiac electromechanics [J].
Salvador, Matteo ;
Dede, Luca ;
Quarteroni, Alfio .
COMPUTATIONAL MECHANICS, 2020, 66 (02) :491-511
[46]   Free-edge stress evaluation of general laminated composites using a novel multifield variational beam formulation [J].
Dhadwal, Manoj Kumar ;
Jung, Sung Nam .
COMPOSITE STRUCTURES, 2020, 233 (233)
[47]   Characterization of a two-dimensional static wind field using Radial Basis Functions [J].
Troub, Brandon ;
Garrido, Rockwell ;
Montalvo, Carlos ;
Richardson, J. D. .
SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2019, 95 (06) :561-567
[48]   Mapping Based Quality Metrics for Mesh Deformation Algorithms Using Radial Basis Functions [J].
Xie, Changchuan ;
Jia, Sijia ;
Li, Yingjie ;
An, Chao ;
Yang, Chao .
APPLIED SCIENCES-BASEL, 2021, 11 (01) :1-17
[49]   Fast auralization using radial basis functions type of artificial neural network techniques [J].
Tenenbaum, Roberto A. ;
Taminato, Filipe O. ;
Melo, Viviane S. G. .
APPLIED ACOUSTICS, 2020, 157
[50]   Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions [J].
Song, Dong ;
Wang, Haonan ;
Tu, Catherine Y. ;
Marmarelis, Vasilis Z. ;
Hampson, Robert E. ;
Deadwyler, Sam A. ;
Berger, Theodore W. .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2013, 35 (03) :335-357