The Ultra Weak Variational Formulation Using Bessel Basis Functions

被引:17
作者
Luostari, Teemu [1 ]
Huttunen, Tomi [1 ]
Monk, Peter [2 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, FI-70211 Kuopio, Finland
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
The ultra weak variational formulation; Helmholtz problem; planewave basis; Bessel basis; non-polynomial basis; DISCONTINUOUS GALERKIN METHODS; LEAST-SQUARES METHOD; PLANE-WAVES; EQUATIONS; MODEL;
D O I
10.4208/cicp.121209.040111s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the ultra weak variational formulation (UWVF) of the 2-D Helmholtz equation using a new choice of basis functions. Traditionally the UWVF basis functions are chosen to be plane waves. Here, we instead use first kind Bessel functions. We compare the performance of the two bases. Moreover, we show that it is possible to use coupled plane wave and Bessel bases in the same mesh. As test cases we shall consider propagating plane and evanescent waves in a rectangular domain and a singular 2-D Helmholtz problem in an L-shaped domain.
引用
收藏
页码:400 / 414
页数:15
相关论文
共 50 条
  • [31] Using radial basis functions in airborne gravimetry for local geoid improvement
    Li, Xiaopeng
    JOURNAL OF GEODESY, 2018, 92 (05) : 471 - 485
  • [32] Sedimentation calculations within an Eulerian framework using series of basis functions
    Rodriguez Geno, Camilo Fernando
    Alfonso, Lester
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (736) : 2053 - 2066
  • [33] Extraction of otoacoustic distortion product sources using pulse basis functions
    Zelle, Dennis
    Gummer, Anthony W.
    Dalhoff, Ernst
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 134 (01) : EL64 - EL69
  • [34] Expansion of Preisach density in magnetic hysteresis using general basis functions
    Bhattacharjee, Arindam
    Mohanty, Atanu K.
    Chatterjee, Anindya
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 341 : 418 - 427
  • [35] Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions
    Xu, Song
    Li, Yang
    Guo, Qi
    Yang, Xiao-Feng
    Chan, Rosa H. M.
    JOURNAL OF NEUROSCIENCE METHODS, 2017, 278 : 46 - 56
  • [36] Direct evaluation of dynamical large-deviation rate functions using a variational ansatz
    Jacobson, Daniel
    Whitelam, Stephen
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [37] Efficient least squares approximation and collocation methods using radial basis functions
    Zhou, Yiqing
    Huybrechs, Daan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 447
  • [38] Semi-Procedural Textures Using Point Process Texture Basis Functions
    Guehl, P.
    Allegre, R.
    Dischler, J. -M.
    Benes, B.
    Galin, E.
    COMPUTER GRAPHICS FORUM, 2020, 39 (04) : 159 - 171
  • [39] Approximating a Retarded-Advanced Differential Equation Using Radial Basis Functions
    Filomena Teodoro, M.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT V, 2017, 10408 : 33 - 43
  • [40] A meshfree method for inverse wave propagation using collocation and radial basis functions
    Wang, Lihua
    Wang, Zhen
    Qian, Zhihao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 322 : 311 - 350