The Ultra Weak Variational Formulation Using Bessel Basis Functions

被引:17
作者
Luostari, Teemu [1 ]
Huttunen, Tomi [1 ]
Monk, Peter [2 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, FI-70211 Kuopio, Finland
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
The ultra weak variational formulation; Helmholtz problem; planewave basis; Bessel basis; non-polynomial basis; DISCONTINUOUS GALERKIN METHODS; LEAST-SQUARES METHOD; PLANE-WAVES; EQUATIONS; MODEL;
D O I
10.4208/cicp.121209.040111s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the ultra weak variational formulation (UWVF) of the 2-D Helmholtz equation using a new choice of basis functions. Traditionally the UWVF basis functions are chosen to be plane waves. Here, we instead use first kind Bessel functions. We compare the performance of the two bases. Moreover, we show that it is possible to use coupled plane wave and Bessel bases in the same mesh. As test cases we shall consider propagating plane and evanescent waves in a rectangular domain and a singular 2-D Helmholtz problem in an L-shaped domain.
引用
收藏
页码:400 / 414
页数:15
相关论文
共 50 条
  • [1] Improvements for the ultra weak variational formulation
    Luostari, T.
    Huttunen, T.
    Monk, P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 94 (06) : 598 - 624
  • [2] The ultra weak variational formulation of thin clamped plate problems
    Luostari, Teemu
    Huttunen, Tomi
    Monk, Peter
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 260 : 85 - 106
  • [3] Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation
    Cessenat, O
    Després, B
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2003, 11 (02) : 227 - 238
  • [4] ERROR ESTIMATES FOR THE ULTRA WEAK VARIATIONAL FORMULATION IN LINEAR ELASTICITY
    Luostari, Teemu
    Huttunen, Tomi
    Monk, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (01): : 183 - 211
  • [5] ERROR ESTIMATES FOR THE ULTRA WEAK VARIATIONAL FORMULATION OF THE HELMHOLTZ EQUATION
    Buffa, Annalisa
    Monk, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (06): : 925 - 940
  • [6] Performance analysis of the ultra weak variational formulation to compute electromagnetic fields on nonuniform meshes
    Gimpel, Alfred
    Silva, Elson J.
    Afonso, Marcio M.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2018, 31 (02)
  • [7] The ultra weak variational formulation for the modified mild-slope equation
    Alvarez, Amaury C.
    Garcia, Galina C.
    Sarkis, Marcus
    APPLIED MATHEMATICAL MODELLING, 2017, 52 : 28 - 41
  • [8] Combining the Ultra-Weak Variational Formulation and the multilevel fast multipole method
    Darrigrand, E.
    Monk, P.
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (06) : 709 - 719
  • [9] ERROR ESTIMATION FOR NUMERICAL METHODS USING THE ULTRA WEAK VARIATIONAL FORMULATION IN MODEL OF NEAR FIELD SCATTERING PROBLEM
    Luan, Tian
    Ma, Fuming
    Liu, Minghui
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (05) : 491 - 506
  • [10] Implementation of an interior point source in the ultra weak variational formulation through source extraction
    Howarth, C. J.
    Childs, P. N.
    Moiola, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 271 : 295 - 306