The Ultra Weak Variational Formulation Using Bessel Basis Functions

被引:17
|
作者
Luostari, Teemu [1 ]
Huttunen, Tomi [1 ]
Monk, Peter [2 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, FI-70211 Kuopio, Finland
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
The ultra weak variational formulation; Helmholtz problem; planewave basis; Bessel basis; non-polynomial basis; DISCONTINUOUS GALERKIN METHODS; LEAST-SQUARES METHOD; PLANE-WAVES; EQUATIONS; MODEL;
D O I
10.4208/cicp.121209.040111s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the ultra weak variational formulation (UWVF) of the 2-D Helmholtz equation using a new choice of basis functions. Traditionally the UWVF basis functions are chosen to be plane waves. Here, we instead use first kind Bessel functions. We compare the performance of the two bases. Moreover, we show that it is possible to use coupled plane wave and Bessel bases in the same mesh. As test cases we shall consider propagating plane and evanescent waves in a rectangular domain and a singular 2-D Helmholtz problem in an L-shaped domain.
引用
收藏
页码:400 / 414
页数:15
相关论文
共 50 条
  • [1] AN ULTRA-WEAK VARIATIONAL FORMULATION
    DESPRES, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (10): : 939 - 944
  • [2] Improvements for the ultra weak variational formulation
    Luostari, T.
    Huttunen, T.
    Monk, P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 94 (06) : 598 - 624
  • [3] Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation
    Cessenat, O
    Després, B
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2003, 11 (02) : 227 - 238
  • [4] Solving Maxwell's equations using the ultra weak variational formulation
    Huttunen, T.
    Malinen, M.
    Monk, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (02) : 731 - 758
  • [5] Computational aspects of the ultra-weak variational formulation
    Huttunen, T
    Monk, P
    Kaipio, JP
    JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 182 (01) : 27 - 46
  • [6] Weak formulation of finite element method using wavelet basis functions
    Ho, SL
    Yang, SY
    Wong, HC
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (05) : 3203 - 3207
  • [7] The ultra weak variational formulation of thin clamped plate problems
    Luostari, Teemu
    Huttunen, Tomi
    Monk, Peter
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 260 : 85 - 106
  • [8] ERROR ESTIMATES FOR THE ULTRA WEAK VARIATIONAL FORMULATION IN LINEAR ELASTICITY
    Luostari, Teemu
    Huttunen, Tomi
    Monk, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (01): : 183 - 211
  • [9] ERROR ESTIMATES FOR THE ULTRA WEAK VARIATIONAL FORMULATION OF THE HELMHOLTZ EQUATION
    Buffa, Annalisa
    Monk, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (06): : 925 - 940
  • [10] The ultra-weak variational formulation for elastic wave problems
    Huttunen, T
    Monk, P
    Collino, F
    Kaipio, JP
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05): : 1717 - 1742