A reaction-diffusion system modeling predator-prey with prey-taxis

被引:168
作者
Ainseba, Bedr'Eddine [2 ,3 ]
Bendahmane, Mostafa [1 ]
Noussair, Ahmed [4 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[2] Univ Victor Segalen Bordeaux 2 IMB, CNRS, UMR 5251, Bordeaux, France
[3] INRIA Futurs Bordeaux, Bordeaux, France
[4] Univ Bordeaux 1, IMB, F-33400 Talence, France
关键词
reaction-diffusion system; predator-prey; prey-taxis; finite volume scheme;
D O I
10.1016/j.nonrwa.2007.06.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with a system of nonlinear partial differential equations modeling the Lotka-Volterra interactions of predators and preys in the presence of prey-taxis and spatial diffusion. The spatial and temporal variations of the predator's velocity are determined by the prey gradient. We prove the existence of weak solutions by using Schauder fixed-point theorem and uniqueness via duality technique. The linearized stability around equilibrium is also studied. A finite volume scheme is build and numerical simulation show interesting phenomena of pattern formation. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2086 / 2105
页数:20
相关论文
共 14 条
[1]  
AINSEBA BE, 2002, J DIFFERENTIAL INTEG, V15, P85
[2]  
Aly S., 2005, DIFF EQUAT, V13, P311
[3]  
[Anonymous], 1980, DIFFUSION ECOLOGICAL
[4]   On a two-sidedly degenerate chemotaxis model with volume-filling effect [J].
Bendahmane, Mostafa ;
Karlsen, Kenneth H. ;
Urbano, Jose Miguel .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (05) :783-804
[5]   Two ways of modelling cross-diffusion [J].
Farkas, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (02) :1225-1233
[6]   Global existence for a parabolic chemotaxis model with prevention of overcrowding [J].
Hillen, T ;
Painter, K .
ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (04) :280-301
[7]  
LADYZHENSKAYA OA, 1968, T AMS, V23
[8]   DISPERSION AND POPULATION INTERACTIONS [J].
LEVIN, SA .
AMERICAN NATURALIST, 1974, 108 (960) :207-228
[9]   HYPOTHESIS FOR ORIGIN OF PLANKTONIC PATCHINESS [J].
LEVIN, SA ;
SEGEL, LA .
NATURE, 1976, 259 (5545) :659-659
[10]   SPATIAL SEGREGATION IN COMPETITIVE INTERACTION-DIFFUSION EQUATIONS [J].
MIMURA, M ;
KAWASAKI, K .
JOURNAL OF MATHEMATICAL BIOLOGY, 1980, 9 (01) :49-64