Existence of bulk chiral fermions and crystal symmetry

被引:150
作者
Manes, J. L. [1 ]
机构
[1] Univ Basque Country, Dept Fis Mat Condensada, E-48080 Bilbao, Spain
关键词
BILBAO CRYSTALLOGRAPHIC SERVER;
D O I
10.1103/PhysRevB.85.155118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the existence of bulk chiral fermions around points of symmetry in the Brillouin zone of nonmagnetic three-dimensional (3D) crystals with negligible spin-orbit interactions. We use group theory to show that this is possible, but only for a reduced number of space groups and points of symmetry that we tabulate. Moreover, we show that for a handful of space groups the existence of bulk chiral fermions is not only possible but unavoidable, irrespective of the concrete crystal structure. Thus our tables can be used to look for bulk chiral fermions in a specific class of systems, namely, that of nonmagnetic 3D crystals with sufficiently weak spin-orbit coupling. We also discuss the effects of spin-orbit interactions and possible extensions of our approach to Weyl semimetals, crystals with magnetic order, and systems with Dirac points with pseudospin 1 and 3/2. A simple tight-binding model is used to illustrate some of the issues.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Monte Carlo determination of the phase diagram of the double-exchange model -: art. no. 054408 [J].
Alonso, JL ;
Capitán, JA ;
Fernández, LA ;
Guinea, R ;
Martín-Mayor, V .
PHYSICAL REVIEW B, 2001, 64 (05) :0544081-0544088
[2]   Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups [J].
Aroyo, MI ;
Kirov, A ;
Capillas, C ;
Perez-Mato, JM ;
Wondratschek, H .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2006, 62 :115-128
[3]   Bilbao crystallographic server: I. Databases and crystallographic computing programs [J].
Aroyo, MI ;
Perez-Mato, JM ;
Capillas, C ;
Kroumova, E ;
Ivantchev, S ;
Madariaga, G ;
Kirov, A ;
Wondratschek, H .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2006, 221 (01) :15-27
[4]   Designing Dirac points in two-dimensional lattices [J].
Asano, Kenichi ;
Hotta, Chisa .
PHYSICAL REVIEW B, 2011, 83 (24)
[5]  
Bradley C., 2010, The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]  
Cortijo A., J PHYS A IN PRESS
[8]   Lattice generalization of the Dirac equation to general spin and the role of the flat band [J].
Dora, Balazs ;
Kailasvuori, Janik ;
Moessner, R. .
PHYSICAL REVIEW B, 2011, 84 (19)
[9]  
El-Batanouny M., 2008, SYMMETRY CONDENSED M
[10]   Topological phases for fermionic cold atoms on the Lieb lattice [J].
Goldman, N. ;
Urban, D. F. ;
Bercioux, D. .
PHYSICAL REVIEW A, 2011, 83 (06)