Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system

被引:135
作者
Liu, Chang [1 ]
Wang, Yujie [1 ]
Chen, Zonghai [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Anhui, Peoples R China
基金
中国博士后科学基金;
关键词
Hybrid energy storage system; Lithium-ion battery; Degradation model; State of health prediction; Remaining useful life prediction; GAUSSIAN PROCESS REGRESSION; STATE-OF-HEALTH; ON-BOARD STATE; BROWNIAN-MOTION; CHARGE; POWER; PROGNOSTICS; PACK;
D O I
10.1016/j.energy.2018.10.131
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-ion battery/ultracapacitor hybrid energy storage system is capable of extending the cycle life and power capability of battery, which has attracted growing attention. To fulfill the goal of long cycle life, accurate assessment for degradation of lithium-ion battery is necessary in hybrid energy management. This paper proposes an improved degradation model of lithium-ion battery based on the electrochemical mechanism of capacity fade, in which the influence of cycling current is taken into consideration. Moreover, genetic algorithm is applied to identify the initial values of model parameters. A particle filter based data driven framework is also designed to track the variation of model parameters and states during the cycling process. Short-term and long-term degradation prediction methods are then developed, to forecast the essential indicators of battery health. Datasets of battery cycling tests under both constant cycling current and dynamic cycling current are used for verification. The root mean square error results for state of health prediction (less than 18 cycles) and remaining useful life prediction are below 8% and 40 cycles, respectively, showing the accuracy and applicability of the proposed methods. Additionally, the baseline degradation prediction for case with cycling current information unknown is also illustrated. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:796 / 806
页数:11
相关论文
共 34 条
[1]   An accelerated calendar and cycle life study of Li-ion cells [J].
Bloom, I ;
Cole, BW ;
Sohn, JJ ;
Jones, SA ;
Polzin, EG ;
Battaglia, VS ;
Henriksen, GL ;
Motloch, C ;
Richardson, R ;
Unkelhaeuser, T ;
Ingersoll, D ;
Case, HL .
JOURNAL OF POWER SOURCES, 2001, 101 (02) :238-247
[2]   Battery Health Prognosis Using Brownian Motion Modeling and Particle Filtering [J].
Dong, Guangzhong ;
Chen, Zonghai ;
Wei, Jingwen ;
Ling, Qiang .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (11) :8646-8655
[3]   Power and life extension of battery-ultracapcacitor hybrids [J].
Dougal, RA ;
Liu, SY ;
White, RE .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2002, 25 (01) :120-131
[4]   State-of-Charge and State-of-Health Lithium-Ion Batteries' Diagnosis According to Surface Temperature Variation [J].
El Mejdoubi, Asmae ;
Oukaour, Amrane ;
Chaoui, Hicham ;
Gualous, Hamid ;
Sabor, Jalal ;
Slamani, Youssef .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (04) :2391-2402
[5]   Estimation of State of Charge, Unknown Nonlinearities, and State of Health of a Lithium-Ion Battery Based on a Comprehensive Unobservable Model [J].
Gholizadeh, Mehdi ;
Salmasi, Farzad R. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (03) :1335-1344
[6]   A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation [J].
Han, Xuebing ;
Ouyang, Minggao ;
Lu, Languang ;
Li, Jianqiu .
JOURNAL OF POWER SOURCES, 2014, 268 :658-669
[7]   A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification [J].
Han, Xuebing ;
Ouyang, Minggao ;
Lu, Languang ;
Li, Jianqiu ;
Zheng, Yuejiu ;
Li, Zhe .
JOURNAL OF POWER SOURCES, 2014, 251 :38-54
[8]   Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency [J].
Hausmann, Austin ;
Depcik, Christopher .
JOURNAL OF POWER SOURCES, 2013, 235 :148-158
[9]   Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method [J].
He, Wei ;
Williard, Nicholas ;
Osterman, Michael ;
Pecht, Michael .
JOURNAL OF POWER SOURCES, 2011, 196 (23) :10314-10321
[10]   State of health estimation of lithium-ion batteries: A multiscale Gaussian process regression modeling approach [J].
He, Yi-Jun ;
Shen, Jia-Ni ;
Shen, Ji-Fu ;
Ma, Zi-Feng .
AICHE JOURNAL, 2015, 61 (05) :1589-1600