Faithful Fabrication of Biocompatible Multicompartmental Memomicrospheres for Digitally Color-Tunable Barcoding

被引:56
作者
Tang, Guosheng [1 ,2 ]
Chen, Long [1 ]
Wang, Zixuan [2 ]
Gao, Shuting [1 ]
Qu, Qingli [1 ]
Xiong, Ranhua [3 ]
Braeckmans, Kevin [3 ]
De Smedt, Stefaan C. [1 ,3 ]
Zhang, Yu Shrike [2 ]
Huang, Chaobo [1 ]
机构
[1] Nanjing Forestry Univ, Coll Chem Engn, Joint Lab Adv Biomed Technol NFU UGent, Nanjing 210037, Peoples R China
[2] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Engn Med, Cambridge, MA 02139 USA
[3] Univ Ghent, Fac Pharmaceut Sci, Lab Gen Biochem & Phys Pharm, Ottergemsesteenweg 460, Ghent 9000, Belgium
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
anti-counterfeiting; barcodes; biocompatible; gas-shearing; memomicrospheres; multicompartmental microspheres; PHOTONIC BARCODES; PARTICLES;
D O I
10.1002/smll.201907586
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Barcodes have attracted widespread attention, especially for the multiplexed bioassays and anti-counterfeiting used toward medical and biomedical applications. An enabling gas-shearing approach is presented for generating 10-faced microspherical barcodes with precise control over the properties of each compartment. As such, the color of each compartment could be programmatically adjusted in the 10-faced memomicrospheres by using pregel solutions containing different combinations of fluorescent nanoparticles. During the process, three primary colors (red, green, and blue) are adopted to obtain up to seven merged fluorescent colors for constituting a large amount of coding as well as a magnetic compartment, capable of effective and robust high-throughput information-storage. More importantly, by using the biocompatible sodium alginate to construct the multicolor microspherical barcodes, the proposed technology is likely to advance the fields of food and pharmaceutics anti-counterfeiting. These remarkable properties point to the potential value of gas-shearing in engineering microspherical barcodes for biomedical applications in the future.
引用
收藏
页数:8
相关论文
共 41 条
[1]  
Aldhous P, 2005, NATURE, V434, P132, DOI 10.1038/434132a
[2]  
Armstrong S., 2012, NAT PHOTONICS, V6, P801
[3]   Physical unclonable functions generated through chemical methods for anti-counterfeiting [J].
Arppe, Riikka ;
Sorensen, Thomas Just .
NATURE REVIEWS CHEMISTRY, 2017, 1 (04)
[4]   Encoding microcarriers by spatial selective photobleaching [J].
Braeckmans, K ;
De Smedt, SC ;
Roelant, C ;
Leblans, M ;
Pauwels, R ;
Demeester, J .
NATURE MATERIALS, 2003, 2 (03) :169-173
[5]   Structural colour in colourimetric sensors and indicators [J].
Burgess, Ian B. ;
Loncar, Marko ;
Aizenberg, Joanna .
JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (38) :6075-6086
[6]   Digitally encoded drug tablets to combat counterfeiting [J].
Fayazpour, Farzaneh ;
Lucas, Bart ;
Huyghebaert, Nathalie ;
Braeckmans, Kevin ;
Derveaux, Stefaan ;
Stubbe, Barbara G. ;
Remon, Jean-Paul ;
Demeester, Jo ;
Vervaet, Chris ;
De Smedt, Stefaan C. .
ADVANCED MATERIALS, 2007, 19 (22) :3854-+
[7]   Click Chemistry-Based DNA Labeling of Cells for Barcoding Applications [J].
Gentile, Stefan D. ;
Griebel, Megan E. ;
Anderson, Erik W. ;
Underhill, Gregory H. .
BIOCONJUGATE CHEMISTRY, 2018, 29 (08) :2846-2854
[8]   Unbreakable Codes in Electrospun Fibers: Digitally Encoded Polymers to Stop Medicine Counterfeiting [J].
Huang, Chaobo ;
Lucas, Bart ;
Vervaet, Chris ;
Braeckmans, Kevin ;
Van Calenbergh, Serge ;
Karalic, Izet ;
Vandewoestyne, Mado ;
Deforce, Dieter ;
Demeester, Jo ;
De Smedt, Stefaan C. .
ADVANCED MATERIALS, 2010, 22 (24) :2657-+
[9]   Porous Hydrogel-Encapsulated Photonic Barcodes for Multiplex Detection of Cardiovascular Biomarkers [J].
Ji, JingJing ;
Lu, Wenbin ;
Zhu, Yi ;
Jin, Hong ;
Yao, Yuyu ;
Zhang, Huidan ;
Zhao, Yuanjin .
ACS SENSORS, 2019, 4 (05) :1384-1390
[10]   Encoding, Reading, and Transforming Information Using Multifluorescent Supramolecular Polymeric Hydrogels [J].
Ji, Xiaofan ;
Wu, Ren-Tsung ;
Long, Lingliang ;
Ke, Xian-Sheng ;
Guo, Chenxing ;
Ghang, Yoo-Jin ;
Lynch, Vincent M. ;
Huang, Feihe ;
Sessler, Jonathan L. .
ADVANCED MATERIALS, 2018, 30 (11)