Learning in Memristive Neural Network Architectures Using Analog Backpropagation Circuits

被引:109
作者
Krestinskaya, Olga [1 ]
Salama, Khaled Nabil [2 ]
James, Alex Pappachen [3 ]
机构
[1] Nazarbayev Univ, Bioinspired Microelect Syst Grp, Astana 010000, Kazakhstan
[2] King Abdullah Univ Sci & Technol, Sensors Lab, Thuwal 23955, Saudi Arabia
[3] Nazarbayev Univ, Sch Engn, Elect & Comp Engn Dept, Astana 010000, Kazakhstan
关键词
Analog circuits; backpropagation; learning; crossbar; memristor; hierarchical temporal memory; long-short term memory; deep neural network; binary neural network; multiple neural network; FEEDFORWARD; ALGORITHM; ARRAY;
D O I
10.1109/TCSI.2018.2866510
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The on-chip implementation of learning algorithms would speed up the training of neural networks in crossbar arrays. The circuit level design and implementation of a backpropagation algorithm using gradient descent operation for neural network architectures is an open problem. In this paper, we propose analog backpropagation learning circuits for various memristive learning architectures, such as deep neural network, binary neural network, multiple neural network, hierarchical temporal memory, and long short-term memory. The circuit design and verification are done using TSMC 180-nm CMOS process models and TiO2-based memristor models. The application level validations of the system are done using XOR problem, MNIST character, and Yale face image databases.
引用
收藏
页码:719 / 732
页数:14
相关论文
共 67 条
[31]  
Vo HM, 2017, INT CONF SYST SCI EN, P538, DOI 10.1109/ICSSE.2017.8030932
[32]  
Hubara I, 2016, ADV NEUR IN, V29
[33]   Neuron inspired data encoding memristive multi-level memory cell [J].
Irmanova, Aidana ;
James, Alex Pappachen .
ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2018, 95 (03) :429-434
[34]  
Irmanova A, 2017, 2017 IEEE ASIA PACIFIC CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIMEASIA), P69, DOI 10.1109/PRIMEASIA.2017.8280366
[35]   Artificial neural networks: A tutorial [J].
Jain, AK ;
Mao, JC ;
Mohiuddin, KM .
COMPUTER, 1996, 29 (03) :31-+
[36]   HTM Spatial Pooler With Memristor Crossbar Circuits for Sparse Biometric Recognition [J].
James, Alex Pappachen ;
Fedorova, Irina ;
Ibrayev, Timur ;
Kudithipudi, Dhireesha .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2017, 11 (03) :640-651
[37]   Nonlinear Prediction with Deep Recurrent Neural Networks for Non-Blind Audio Bandwidth Extension [J].
Jiang, Lin ;
Hu, Ruimin ;
Wang, Xiaochen ;
Tu, Weiping ;
Zhang, Maosheng .
CHINA COMMUNICATIONS, 2018, 15 (01) :72-85
[38]   Analog Implementation of a Novel Resistive-Type Sigmoidal Neuron [J].
Khodabandehloo, Golnar ;
Mirhassani, Mitra ;
Ahmadi, Majid .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2012, 20 (04) :750-754
[39]   Analog Backpropagation Learning Circuits for Memristive Crossbar Neural Networks [J].
Krestinskaya, Olga ;
Salama, Khaled Nabil ;
James, Alex Pappachen .
2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
[40]   Hierarchical Temporal Memory Features with Memristor Logic Circuits for Pattern Recognition [J].
Krestinskaya, Olga ;
Ibrayev, Timur ;
James, Alex Pappachen .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (06) :1143-1156