Spatio-temporal rule mining:: Issues and techniques

被引:0
作者
Gidófalvi, G [1 ]
Pedersen, TB [1 ]
机构
[1] Aalborg Univ, Dept Comp Sci, Aalborg, Denmark
来源
DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS | 2005年 / 3589卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in communication and information technology, such as the increasing accuracy of CPS technology and the miniaturization of wireless communication devices pave the road for Location-Based Services (LBS). To achieve high quality for such services, spatio-temporal data mining techniques are needed. In this paper, we describe experiences with spatio-temporal rule mining in a Danish data mining company. First, a number of real world spatio-temporal data sets are described, leading to a taxonomy of spatio-temporal data. Second, the paper describes a general methodology that transforms the spatio-temporal rule mining task to the traditional market basket analysis task and applies it to the described data sets, enabling traditional association rule mining methods to discover spatio-temporal rules for LBS. Finally, unique issues in spatio-temporal rule mining are identified and discussed.
引用
收藏
页码:275 / 284
页数:10
相关论文
共 50 条
[21]   Spatio-temporal pattern mining in sports video [J].
Lan, Dong-Jun ;
Ma, Yu-Fei ;
Ma, Wei-Ying ;
Zhang, Hong-Jiang .
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2004, 3332 :306-313
[22]   Mining frequent items in spatio-temporal databases [J].
Jin, CQ ;
Xiong, F ;
Huang, JZX ;
Yu, JX ;
Zhou, AY .
ADVANCES IN WEB-AGE INFORMATION MANAGEMENT: PROCEEDINGS, 2004, 3129 :549-558
[23]   Research issues in spatio-temporal database systems [J].
Sellis, T .
ADVANCES IN SPATIAL DATABASES, 1999, 1651 :5-11
[24]   Comparative Study of Association Rule Mining and MiSTIC in Extracting Spatio-Temporal Disease Occurrences Patterns [J].
Raheja, Vipul ;
Rajan, K. S. .
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, :813-820
[25]   Mining Rainfall Spatio-Temporal Patterns in Twitter: A Temporal Approach [J].
de Andrade, Sidgley Camargo ;
Restrepo-Estrada, Camilo ;
Delbem, Alexandre C. B. ;
Mendiondo, Eduardo Mario ;
de Albuquerque, Joao Porto .
SOCIETAL GEO-INNOVATION, 2017, :19-37
[26]   Spatio-temporal sensor data processing techniques [J].
Kim J.-J. .
Kim, Jeong-Joon (jjkim@kpu.ac.kr), 1600, Korea Information Processing Society (13) :1259-1276
[27]   Modelling and analysis techniques for spatio-temporal requirements [J].
Touzani M. ;
Ponsard C. .
2017, Lavoisier (22) :43-75
[28]   Spatio-temporal Search Techniques for the Semantic Web [J].
Kim, Jeong-Joon ;
Kwun, Tae-Min ;
Kim, Kyu-Ho ;
Lee, Ki-Young ;
Jeong, Yeon-Man .
COMPUTER APPLICATIONS FOR DATABASE, EDUCATION, AND UBIQUITOUS COMPUTING, 2012, 352 :134-+
[29]   Mining spatio-temporal patterns in object mobility databases [J].
Florian Verhein ;
Sanjay Chawla .
Data Mining and Knowledge Discovery, 2008, 16 :5-38
[30]   Mining Spatio-Temporal Data at Different Levels of Detail [J].
Camossi, Elena ;
Bertolotto, Michela ;
Kechadi, Tahar .
EUROPEAN INFORMATION SOCIETY: TAKING GEOINFORMATION SCIENCE ONE STEP FURTHER, 2009, :225-240