Asymptotic analysis of layered elastic beams

被引:2
|
作者
Serpilli, M [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Architettura Costruzioni & Strutture, I-60131 Ancona, Italy
来源
COMPTES RENDUS MECANIQUE | 2005年 / 333卷 / 08期
关键词
computational solid mechanics; asymptotic analysis; layered beams; bonding;
D O I
10.1016/j.crme.2005.07.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider an elastic beam formed by three layers, fixed at one end and loaded at the free end. We call adherents the upper and lower layers Omega(+)(epsilon) and Omega(-)(epsilon) and an adhesive layer Omega(m)(epsilon). We denote by epsilon h(+/-,m) the thickness of each layer and we suppose that the stiffness of the adhesive layer is epsilon(2), with respect to that of the adherents. By an asymptotic analysis we obtain the zeroth order limit problem and the form of the second order displacements.
引用
收藏
页码:593 / 598
页数:6
相关论文
共 50 条
  • [21] FREE VIBRATION ANALYSIS OF CROSS-PLY LAYERED COMPOSITE BEAMS WITH FINITE LENGTH ON ELASTIC FOUNDATION
    Jafari-Talookolaei, Ramazan-Ali
    Kargarnovin, Mohammad-Hossein
    Ahmadian, Mohammad-Taghi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2008, 5 (01) : 21 - 36
  • [22] ASYMPTOTIC ANALYSIS OF BEAMS WITH A THIN RECTANGULAR SECTION
    RIGOLOT, A
    JOURNAL DE MECANIQUE, 1979, 18 (02): : 243 - 275
  • [23] ASYMPTOTIC ANALYSIS OF ULTRASONIC BEAMS AND INTERFACE PROBLEMS
    ROUSSEAU, M
    GATIGNOL, P
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1986, : 273 - 293
  • [24] Analysis for bending of elastic bimetal beams
    Tang Xiao-wen
    Shang Xin-chun
    Li Li-yun
    INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS II, PTS 1-3, 2011, 58-60 : 387 - +
  • [25] Peridynamic analysis of curved elastic beams
    Yang, Zhenghao
    Naumenko, Konstantin
    Ma, Chien-Ching
    Oterkus, Erkan
    Oterkus, Selda
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 101
  • [26] DERIVATION OF AN EVOLUTION MODEL FOR NONLINEARLY ELASTIC BEAMS BY ASYMPTOTIC-EXPANSION METHODS
    ALVAREZVAZQUEZ, L
    VIANO, JM
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 115 (1-2) : 53 - 66
  • [27] Asymptotic behavior of some elastic planar networks of Bernoulli-Euler beams
    Ammari, Kais
    APPLICABLE ANALYSIS, 2007, 86 (12) : 1529 - 1548
  • [28] DERIVATION OF GENERALIZED MODELS FOR LINEAR ELASTIC BEAMS BY ASYMPTOTIC-EXPANSION METHOD
    TRABUCHO, L
    VIANO, JM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (11): : 303 - 306
  • [29] Using an Artificial Neural Network for Vibration Analysis of Multi-Layered Composite Beams Located on the Elastic Foundation
    Yaqi Yang
    Zhihui Jia
    Journal of The Institution of Engineers (India): Series C, 2025, 106 (1) : 171 - 180
  • [30] Dynamic analysis of damping in layered and welded beams
    Singh, Bhagat
    Nanda, Bijoy Kumar
    ENGINEERING STRUCTURES, 2013, 48 : 10 - 20