Toeplitz Operators on Variable Exponent Bergman Spaces

被引:14
作者
Chacon, Gerardo R. [1 ]
Rafeiro, Humberto [2 ]
机构
[1] Gallaudet Univ, Dept Sci Technol & Math, 800 Florida Ave NE, Washington, DC 20002 USA
[2] Pontificia Univ Javeriana, Dept Matemat, Bogota, Colombia
关键词
Bergman spaces; variable exponent Lebesgue spaces; Bergman projection; Toeplitz operators; Carleson measures;
D O I
10.1007/s00009-016-0701-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the boundedness and compactness of Toeplitz operators defined on variable exponent Bergman spaces. A characterization is given in terms of Carleson measures.
引用
收藏
页码:3525 / 3536
页数:12
相关论文
共 28 条
[1]   New diffusion models in image processing [J].
Aboulaich, R. ;
Meskine, D. ;
Souissi, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :874-882
[2]   On a non-linear model for image noise reduction [J].
Aboulaich, R. ;
Boujena, S. ;
El Guarmah, E. .
COMPTES RENDUS MATHEMATIQUE, 2007, 345 (08) :425-429
[3]   Regularity results for electrorheological fluids: the stationary case [J].
Acerbi, E ;
Mingione, G .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) :817-822
[4]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[5]  
[Anonymous], 2007, GRADUATE TEXTS MATH
[6]  
[Anonymous], 2006, Applications of mathematics, DOI DOI 10.1007/S10778-006-0110-3
[7]  
[Anonymous], 2007, MATH SURVEYS MONOGRA
[8]  
Antontsev S.N., 2006, Ann. Univ. Ferrara. Sez., VVII, P19, DOI [DOI 10.1007/S11565-006-0002-9, 10.1007/s11565-006-0002-9]
[9]  
Bergman S., 1970, The Kernel Function and Conformal Mapping (Mathematical Surveys Number V)
[10]  
Blomgren P, 1997, INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL III, P384, DOI 10.1109/ICIP.1997.632128