Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm:: A refresher

被引:233
作者
Stoica, P [1 ]
Selén, Y [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Syst & Control Div, S-75105 Uppsala, Sweden
关键词
D O I
10.1109/MSP.2004.1267055
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A review is given of three approaches that can be used to minimize functions of the type encountered in parameter estimation problems. The first two approaches, the cyclic minimization and the majorization technique, are quite general, whereas the third one, the expectation-maximization (EM) algorithm, is tied to the use of the maximum likelihood (ML) method for parameter estimation.
引用
收藏
页码:112 / 114
页数:3
相关论文
共 8 条
[1]  
Blatt D, 2003, LECT NOTES COMPUT SC, V2683, P164
[2]   Kullback proximal algorithms for maximum-likelihood estimation [J].
Chrétien, S ;
Hero, AO .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (05) :1800-1810
[3]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[4]   PARAMETER-ESTIMATION OF SUPERIMPOSED SIGNALS USING THE EM ALGORITHM [J].
FEDER, M ;
WEINSTEIN, E .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (04) :477-489
[5]   SPACE-ALTERNATING GENERALIZED EXPECTATION-MAXIMIZATION ALGORITHM [J].
FESSLER, JA ;
HERO, AO .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (10) :2664-2677
[6]  
Heiser WJ., 1995, RECENT ADV DESCRIPTI, P157
[7]  
McLachlan G. J., 1997, EM ALGORITHM EXTENSI
[8]   The expectation-maximization algorithm [J].
Moon, TK .
IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (06) :47-60