Fractional-order nonlinear hereditariness of tendons and ligaments of the human knee

被引:18
作者
Bologna, E. [1 ,2 ]
Di Paola, M. [1 ]
Dayal, K. [3 ,4 ,5 ]
Deseri, L. [6 ,7 ,8 ,9 ]
Zingales, M. [1 ,2 ]
机构
[1] Dipartimento Ingn, Viale Sci Ed 8, I-90128 Palermo, Italy
[2] Bio NanoMech Med Sci Lab, Viale Sci Ed 8, I-90128 Palermo, Italy
[3] Carnegie Mellon Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ Pittsburgh, Ctr Nonlinear Anal, Pittsburgh, PA 15213 USA
[5] Carnegie Mellon Univ Pittsburgh, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[6] Univ Pittsburgh, Dept Mech Engn, Benedum Hall, Pittsburgh, PA 15261 USA
[7] Univ Trento, Dipartimento Civile Ambientale & Meccan, Via Mesiano 77, I-38123 Trento, Italy
[8] Carnegie Mellon Univ, Dept Mech Engn, Dept Civil & Env Engn, Pittsburgh, PA 15213 USA
[9] Methodist Hosp Res Inst, Dept Nanomed, 6565 Fannin St,MS B-490, Houston, TX 77030 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2020年 / 378卷 / 2172期
关键词
nonlinear hereditariness; quasi-linear viscoelasticity; single-integral; tendons and ligaments; STRESS-RELAXATION; MODELS; TIME; CALCULUS; CREEP; LAWS;
D O I
10.1098/rsta.2019.0294
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper the authors introduce a nonlinear model of fractional-order hereditariness used to capture experimental data obtained on human tendons of the knee. Creep and relaxation data on fibrous tissues have been obtained and fitted with logarithmic relations that correspond to power-laws with nonlinear dependence of the coefficients. The use of a proper nonlinear transform allows one to use Boltzmann superposition in the transformed variables yielding a fractional-order model for the nonlinear material hereditariness. The fundamental relations among the nonlinear creep and relaxation functions have been established, and the results from the equivalence relations have been contrasted with measures obtained from the experimental data. Numerical experiments introducing polynomial and harmonic stress and strain histories have been reported to assess the provided equivalence relations. This article is part of the theme issue 'Advanced materials modelling via fractional calculus: challenges and perspectives'.
引用
收藏
页数:19
相关论文
共 44 条
[11]   Power-Laws hereditariness of biomimetic ceramics for cranioplasty neurosurgery [J].
Bologna, E. ;
Graziano, F. ;
Deseri, L. ;
Zingales, M. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 115 :61-67
[12]   Stability analysis of Beck's column over a fractional-order hereditary foundation [J].
Bologna, E. ;
Zingales, M. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2218)
[13]   Microstructural properties and mechanics vary between bundles of the human anterior cruciate ligament during stress-relaxation [J].
Castile, Ryan M. ;
Skelley, Nathan W. ;
Babaei, Behzad ;
Brophy, Robert H. ;
Lake, Spencer P. .
JOURNAL OF BIOMECHANICS, 2016, 49 (01) :87-93
[14]   THE STATE OF FRACTIONAL HEREDITARY MATERIALS (FHM) [J].
Deseri, Luca ;
Zingales, Massiliano ;
Pollaci, Pietro .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (07) :2065-2089
[15]   A mechanical picture of fractional-order Darcy equation [J].
Deseri, Luca ;
Zingales, Massimiliano .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) :940-949
[16]   Free energy and states of fractional-order hereditariness [J].
Deseri, Luca ;
Di Paola, Mario ;
Zingales, Massimiliano .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (18) :3156-3167
[17]   Power-law hereditariness of hierarchical fractal bones [J].
Deseri, Luca ;
Di Paola, Mario ;
Zingales, Massimiliano ;
Pollaci, Pietro .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2013, 29 (12) :1338-1360
[18]   Long-range cohesive interactions of non-local continuum faced by fractional calculus [J].
Di Paola, Mario ;
Zingales, Massimiliano .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (21) :5642-5659
[19]   Fractional differential equations and related exact mechanical models [J].
Di Paola, Mario ;
Pinnola, Francesco Paolo ;
Zingales, Massimiliano .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) :608-620
[20]   A discrete mechanical model of fractional hereditary materials [J].
Di Paola, Mario ;
Pinnola, Francesco Paolo ;
Zingales, Massimiliano .
MECCANICA, 2013, 48 (07) :1573-1586