Efficient Direct Reduction of Graphene Oxide by Silicon Substrate

被引:36
作者
Lee, Su Chan [1 ]
Some, Surajit [1 ,6 ]
Kim, Sung Wook [2 ,3 ]
Kim, Sun Jun [1 ]
Seo, Jungmok [4 ]
Lee, Jooho [1 ]
Lee, Taeyoon [4 ]
Ahn, Jong-Hyun [5 ]
Choi, Heon-Jin [2 ,3 ]
Jun, Seong Chan [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, Nanoelectro Mech Device Lab, Seoul 120749, South Korea
[2] Yonsei Univ, Global Inst E3, Seoul 120749, South Korea
[3] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea
[4] Yonsei Univ, Sch Elect & Elect Engn, Nanobio Device Lab, Seoul 120749, South Korea
[5] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea
[6] Inst Chem Technol, Dept Dyestuff Technol, Bombay 400019, Maharashtra, India
基金
新加坡国家研究基金会;
关键词
THERMAL REDUCTION; CHEMICAL-REDUCTION; VITAMIN-C; IN-SITU; FILMS; TRANSPARENT; FABRICATION; CHEMISTRY; SURFACES; HF;
D O I
10.1038/srep12306
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene has been studied for various applications due to its excellent properties. Graphene film fabrication from solutions of graphene oxide (GO) have attracted considerable attention because these procedures are suitable for mass production. GO, however, is an insulator, and therefore a reduction process is required to make the GO film conductive. These reduction procedures require chemical reducing agents or high temperature annealing. Herein, we report a novel direct and simple reduction procedure of GO by silicon, which is the most widely used material in the electronics industry. In this study, we also used silicon nanosheets (SiNSs) as reducing agents for GO. The reducing effect of silicon was confirmed by various characterization methods. Furthermore, the silicon wafer was also used as a reducing template to create a reduced GO (rGO) film on a silicon substrate. By this process, a pure rGO film can be formed without the impurities that normally come from chemical reducing agents. This is an easy and environmentally friendly method to prepare large scale graphene films on Si substrates.
引用
收藏
页数:9
相关论文
共 83 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Stability and Formation Mechanisms of Carbonyl- and Hydroxyl-Decorated Holes in Graphene Oxide [J].
Bagri, A. ;
Grantab, R. ;
Medhekar, N. V. ;
Shenoy, V. B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (28) :12053-12061
[3]  
Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/nchem.686, 10.1038/NCHEM.686]
[4]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[5]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[6]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[7]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion [J].
Che, Jianfei ;
Shen, Liying ;
Xiao, Yinghong .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (09) :1722-1727
[10]   Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves [J].
Chen, Wufeng ;
Yan, Lifeng ;
Bangal, Prakriti R. .
CARBON, 2010, 48 (04) :1146-1152