Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods

被引:163
作者
Kajbafvala, Amir [1 ,2 ]
Ghorbani, Hamed [2 ]
Paravar, Asieh [2 ]
Samberg, Joshua P. [1 ]
Kajbafvala, Ehsan [2 ]
Sadrnezhaad, S. K. [2 ]
机构
[1] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[2] Sharif Univ Technol, Dept Mat Sci & Engn, Tehran, Iran
关键词
Zinc oxide nanostructures; Microwave synthesis; Photocatalytic performance; Methylene blue (MB); ZNO NANOSTRUCTURES; OPTICAL-PROPERTIES; HOLLOW MICROSPHERES; NANOPARTICLES; GROWTH; PHOTOLUMINESCENCE; DEGRADATION; NANOSHEETS; PARTICLES;
D O I
10.1016/j.spmi.2012.01.015
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this study, two different chemical solution methods were used to synthesize Zinc oxide nanostructures via a simple and fast microwave assisted method. Afterwards, the photocatalytic performances of the produced ZnO powders were investigated using methylene blue (MB) photodegradation with UV lamp irradiation. The obtained ZnO nanostructures showed spherical and flower-like morphologies. The average crystallite size of the flower-like and spherical nanostructures were determined to be about 55 nm and 28 nm, respectively. X-ray diffraction (XRD), scanning electronic microscopy (SEM), Brunauer-Emmett-Teller (BET), room temperature photoluminescence (RT-PL) and UV-vis analysis were used for characterization of the synthesized ZnO powders. Using BET N-2-adsorption technique, the specific surface area of the flower-like and spherical ZnO nanostructures were found to be 22.9 m(2)/gr and 98 m(2)/gr, respectively. Both morphologies show similar band gap values. Finally, our results depict that the efficiency of photocatalytic performance in the Zinc oxide nanostructures with spherical morphology is greater than that found in the flower-like Zinc oxide nanostructures as well as bulk ZnO. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:512 / 522
页数:11
相关论文
共 59 条
[1]   Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods [J].
Aleman, B. ;
Hidalgo, P. ;
Fernandez, P. ;
Piqueras, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (22)
[2]   Synthesis, photocatalytic and antibacterial activities of ZnO particles modified by diblock copolymer [J].
Amornpitoksuk, P. ;
Suwanboon, S. ;
Sangkanu, S. ;
Sukhoom, A. ;
Wudtipan, J. ;
Srijan, K. ;
Kaewtaro, S. .
POWDER TECHNOLOGY, 2011, 212 (03) :432-438
[3]   ZnO Nanotubes Grown at Low Temperature Using Ga as Catalysts and Their Enhanced Photocatalytic Activities [J].
Bae, Joonho ;
Bin Han, Jing ;
Zhang, Xiao-Mei ;
Wei, Min ;
Duan, Xue ;
Zhang, Yue ;
Wang, Zhong Lin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (24) :10379-10383
[4]   Hierarchical macro/mesoporous TiO2/SiO2 and TiO2/ZrO2 nanocomposites for environmental photocatalysis [J].
Chen, Xiufang ;
Wang, Xinchen ;
Fu, Xianzhi .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) :872-877
[5]   Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light [J].
Daneshvar, N. ;
Aber, S. ;
Dorraji, M. S. Seyed ;
Khataee, A. R. ;
Rasoulifard, M. H. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2007, 58 (01) :91-98
[6]   ZnO nanostructures for optoelectronics: Material properties and device applications [J].
Djurisic, A. B. ;
Ng, A. M. C. ;
Chen, X. Y. .
PROGRESS IN QUANTUM ELECTRONICS, 2010, 34 (04) :191-259
[7]   Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO [J].
Ekambaram, S. ;
Iikubo, Yoichi ;
Kudo, Akihiko .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 433 (1-2) :237-240
[8]   Synthesis, characterizations, photocatalytic and sensing studies of ZnO nanocapsules [J].
Faisal, M. ;
Khan, Sher Bahadar ;
Rahman, Mohammed M. ;
Jamal, Aslam ;
Asiri, Abdullah M. ;
Abdullah, M. M. .
APPLIED SURFACE SCIENCE, 2011, 258 (02) :672-677
[9]   ZnO-based hollow microspheres: Biopolymer-assisted assemblies from ZnO nanorods [J].
Gao, Shuyan ;
Zhang, Hongjie ;
Wang, Xiaomei ;
Deng, Ruiping ;
Sun, Dehui ;
Zheng, Guoli .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (32) :15847-15852
[10]   Growth kinetics and modeling of ZnO nanoparticles [J].
Hale, PS ;
Maddox, LM ;
Shapter, JG ;
Voelcker, NH ;
Ford, MJ ;
Waclawik, ER .
JOURNAL OF CHEMICAL EDUCATION, 2005, 82 (05) :775-778